001     309611
005     20260202120629.0
024 7 _ |a 10.1007/s13205-026-04701-6
|2 doi
024 7 _ |a pmid:41613168
|2 pmid
024 7 _ |a pmc:PMC12847620
|2 pmc
024 7 _ |a 2190-572X
|2 ISSN
024 7 _ |a 2190-5738
|2 ISSN
037 _ _ |a DKFZ-2026-00261
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Kumar, Abhishek
|b 0
245 _ _ |a Deciphering secondary metabolite potentials of halophilic marine-derived Aspergillus ruber.
260 _ _ |a Heidelberg
|c 2026
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1770021748_1557475
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The halophilic marine-derived fungus Aspergillus ruber CBS 135680 was systematically investigated for its secondary metabolite potential through genome mining. A total of 36 biosynthetic gene clusters (BGCs) were identified, including four non-ribosomal peptide synthetase (NRPS) clusters, eight NRPS-like clusters, eight type I polyketide synthase (T1PKS) clusters, ten terpene clusters, four hybrid clusters, and two siderophore clusters. The largest NRPS cluster (AruBGC2, ~ 58 kb) encodes the siderophore synthase SidC, while AruBGC23 was linked to asperfuranone biosynthesis. Additional clusters were predicted to synthesize bioactive compounds such as cornexistin, TAN-1612, naphthopyrone, clavaric acid, squalestatin S1, asperlactone, and epipyriculol. These metabolites are associated with diverse biological activities, including anticancer, antibacterial, antifungal, nematocidal, and herbicidal properties. The discovery of canonical and noncanonical BGCs pinpoints the metabolic diversity of A. ruber and highlights potential as a promising source of natural products. This study provides the first comprehensive genome-wide assessment of secondary metabolism in A. ruber, offering valuable insights for future drug discovery and biotechnological applications.The online version contains supplementary material available at 10.1007/s13205-026-04701-6.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Aspergillus ruber CBS 135680
|2 Other
650 _ 7 |a Biosynthetic gene clusters
|2 Other
650 _ 7 |a Halophilic
|2 Other
650 _ 7 |a Marine-derived genomics
|2 Other
700 1 _ |a Parveen, Alisha
|b 1
700 1 _ |a Hansen, Frederik Teilfeldt
|b 2
700 1 _ |a Sørensen, Jens Laurids
|b 3
700 1 _ |a Bandapalli, Obul Reddy
|0 P:(DE-He78)b11ccde1801d45d32a6a60f7b396d7dc
|b 4
700 1 _ |a Neerathilingam, Muniasamy
|b 5
700 1 _ |a Prasad, Kumar Suranjit
|b 6
773 _ _ |a 10.1007/s13205-026-04701-6
|g Vol. 16, no. 2, p. 84
|0 PERI:(DE-600)2600522-0
|n 2
|p 84
|t 3 Biotech
|v 16
|y 2026
|x 2190-572X
909 C O |o oai:inrepo02.dkfz.de:309611
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)b11ccde1801d45d32a6a60f7b396d7dc
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2026
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2024-12-09
|w ger
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2024-12-09
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b 3 BIOTECH : 2022
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-09
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-09
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-09
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-09
920 1 _ |0 I:(DE-He78)C050-20160331
|k C050
|l Molekular-Genetische Epidemiologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C050-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21