| Home > Publications database > A proteomics approach to identify predictive blood biomarkers for pleural mesothelioma in prospective cohorts. > print |
| 001 | 309976 | ||
| 005 | 20260220160131.0 | ||
| 024 | 7 | _ | |a 10.1007/s10238-026-02058-x |2 doi |
| 024 | 7 | _ | |a pmid:41714836 |2 pmid |
| 024 | 7 | _ | |a 1591-8890 |2 ISSN |
| 024 | 7 | _ | |a 1591-9528 |2 ISSN |
| 037 | _ | _ | |a DKFZ-2026-00402 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 610 |
| 100 | 1 | _ | |a Herman, Elton Jalis |b 0 |
| 245 | _ | _ | |a A proteomics approach to identify predictive blood biomarkers for pleural mesothelioma in prospective cohorts. |
| 260 | _ | _ | |a Milano |c 2026 |b Springer |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1771599676_3240617 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 500 | _ | _ | |a epub |
| 536 | _ | _ | |a 313 - Krebsrisikofaktoren und Prävention (POF4-313) |0 G:(DE-HGF)POF4-313 |c POF4-313 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de |
| 650 | _ | 7 | |a Asbestos exposure |2 Other |
| 650 | _ | 7 | |a Early biomarkers. |2 Other |
| 650 | _ | 7 | |a Multi-Cohort |2 Other |
| 650 | _ | 7 | |a Pleural mesothelioma |2 Other |
| 650 | _ | 7 | |a Prospective study |2 Other |
| 650 | _ | 7 | |a Proteomics |2 Other |
| 700 | 1 | _ | |a Allione, Alessandra |b 1 |
| 700 | 1 | _ | |a Viberti, Clara |b 2 |
| 700 | 1 | _ | |a Manfredi, Marcello |b 3 |
| 700 | 1 | _ | |a Russo, Alessia |b 4 |
| 700 | 1 | _ | |a Sana-Hafeez, Khadija |b 5 |
| 700 | 1 | _ | |a Kaiser, Nina |b 6 |
| 700 | 1 | _ | |a Johnen, Georg |b 7 |
| 700 | 1 | _ | |a Brüning, Thomas |b 8 |
| 700 | 1 | _ | |a Mirabelli, Dario |b 9 |
| 700 | 1 | _ | |a Dianzani, Irma |b 10 |
| 700 | 1 | _ | |a Agudo, Antonio |b 11 |
| 700 | 1 | _ | |a Weiderpass, Elisabete |b 12 |
| 700 | 1 | _ | |a Simeon, Vittorio |b 13 |
| 700 | 1 | _ | |a Kaaks, Rudolf |0 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a |b 14 |u dkfz |
| 700 | 1 | _ | |a Turzanski-Fortner, Renée |0 P:(DE-He78)74a6af8347ec5cbd4b77e562e10ca1f2 |b 15 |u dkfz |
| 700 | 1 | _ | |a Tumino, Rosario |b 16 |
| 700 | 1 | _ | |a Milani, Lorenzo |b 17 |
| 700 | 1 | _ | |a Gálvez-Navas, José María |b 18 |
| 700 | 1 | _ | |a Schulze, Matthias B |b 19 |
| 700 | 1 | _ | |a Schiborn, Catarina |b 20 |
| 700 | 1 | _ | |a Castro, Natalia Cabrera |b 21 |
| 700 | 1 | _ | |a Masala, Giovanna |b 22 |
| 700 | 1 | _ | |a Guevara, Marcela |b 23 |
| 700 | 1 | _ | |a Vineis, Paolo |b 24 |
| 700 | 1 | _ | |a Casalone, Elisabetta |b 25 |
| 700 | 1 | _ | |a Matullo, Giuseppe |b 26 |
| 773 | _ | _ | |a 10.1007/s10238-026-02058-x |0 PERI:(DE-600)2054398-0 |p nn |t Clinical and experimental medicine |v nn |y 2026 |x 1591-8890 |
| 910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 14 |6 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a |
| 910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 15 |6 P:(DE-He78)74a6af8347ec5cbd4b77e562e10ca1f2 |
| 913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-313 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Krebsrisikofaktoren und Prävention |x 0 |
| 914 | 1 | _ | |y 2026 |
| 915 | _ | _ | |a DEAL Springer |0 StatID:(DE-HGF)3002 |2 StatID |d 2025-11-12 |w ger |
| 915 | _ | _ | |a DEAL Springer |0 StatID:(DE-HGF)3002 |2 StatID |d 2025-11-12 |w ger |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2025-11-12 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2025-11-12 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2025-11-12 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2025-11-12 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2025-11-12 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2025-11-12 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2025-11-12 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2025-11-12 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b CLIN EXP MED : 2022 |d 2025-11-12 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2025-11-12 |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2025-11-12 |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2025-11-12 |
| 920 | 1 | _ | |0 I:(DE-He78)C020-20160331 |k C020 |l Epidemiologie von Krebs |x 0 |
| 920 | 1 | _ | |0 I:(DE-He78)C180-20160331 |k C180 |l Krebsepidemiologie |x 1 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-He78)C020-20160331 |
| 980 | _ | _ | |a I:(DE-He78)C180-20160331 |
| 980 | _ | _ | |a UNRESTRICTED |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|