001     309982
005     20260220160004.0
024 7 _ |a 10.1016/j.celrep.2026.117010
|2 doi
024 7 _ |a pmid:41712378
|2 pmid
024 7 _ |a 2211-1247
|2 ISSN
024 7 _ |a 2639-1856
|2 ISSN
037 _ _ |a DKFZ-2026-00408
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Schäfer, Silvia
|b 0
245 _ _ |a ACSL4-associated lipid metabolism is a distinct therapeutic vulnerability in KMT2A-rearranged acute myeloid leukemia.
260 _ _ |a Maryland Heights, MO
|c 2026
|b Cell Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1771599590_3240620
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Deregulated lipid metabolism contributes to leukemogenesis and the progression of acute myeloid leukemia (AML). By analyzing large-scale CRISPR-Cas9 screening data, we identified acyl-CoA synthetase long-chain family member 4 (ACSL4) as a selective vulnerability in lysine methyltransferase 2A-rearranged (KMT2Ar) AML. Functional validation using CRISPR interference and short hairpin RNA knockdown confirmed that ACSL4 loss impairs the growth of KMT2Ar but not non-KMT2Ar AML cells. ACSL4 knockdown reduced colony formation in cells derived from patients with KMT2Ar AML and murine MLL-AF9 cells and delayed leukemia onset in vivo in MLL-AF9 mice. A multi-omics approach, including transcriptomics, proteomics, and lipidomics, revealed depletion of polyunsaturated lipid species and compensatory activation of lipid metabolic pathways upon ACSL4 loss. Supplementation with exogenous polyunsaturated fatty acids (PUFAs) rescued the growth defect, linking ACSL4 dependency to defective PUFA utilization. Finally, we generated a KMT2Ar-ACSL4 dependency signature (KRADS12) that correlates with KMT2Ar status and predicts poor survival in patients with AML.
536 _ _ |a 319H - Addenda (POF4-319H)
|0 G:(DE-HGF)POF4-319H
|c POF4-319H
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a CP: cancer
|2 Other
650 _ 7 |a CP: metabolism
|2 Other
650 _ 7 |a acute myeloid leukemia
|2 Other
650 _ 7 |a chromosomal rearrangements
|2 Other
650 _ 7 |a lipid metabolism
|2 Other
700 1 _ |a Rahimian, Elahe
|b 1
700 1 _ |a Schmitz-Hübsch, Lola
|b 2
700 1 _ |a Shaikh, Mehak
|b 3
700 1 _ |a Brilloff, Silke
|b 4
700 1 _ |a Kufrin, Vida
|b 5
700 1 _ |a Küchler, Sandra
|b 6
700 1 _ |a Fedorova, Maria
|b 7
700 1 _ |a Kusebauch, Natalie
|b 8
700 1 _ |a Ni, Zhixu
|b 9
700 1 _ |a Helm, Dominic
|0 P:(DE-He78)daaed5a5b968028e6e95d273150d5ab1
|b 10
|u dkfz
700 1 _ |a Jeremias, Irmela
|b 11
700 1 _ |a Schewe, Denis M
|b 12
700 1 _ |a Ball, Claudia R
|b 13
700 1 _ |a Bornhäuser, Martin
|b 14
700 1 _ |a Glimm, Hanno
|0 P:(DE-He78)157277fe62f07df1732f9d126a51d1b9
|b 15
700 1 _ |a Alberich-Jorda, Meritxell
|b 16
700 1 _ |a Bill, Marius
|0 P:(DE-He78)3e8aacf45abb87d22071314b72805dc6
|b 17
700 1 _ |a Wurm, Alexander Arthur
|0 P:(DE-He78)cc78445a2cc45a9edf8ee2160a1adbb4
|b 18
773 _ _ |a 10.1016/j.celrep.2026.117010
|g Vol. 45, no. 3, p. 117010 -
|0 PERI:(DE-600)2649101-1
|n 3
|p 117010
|t Cell reports
|v 45
|y 2026
|x 2211-1247
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-He78)daaed5a5b968028e6e95d273150d5ab1
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 15
|6 P:(DE-He78)157277fe62f07df1732f9d126a51d1b9
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 17
|6 P:(DE-He78)3e8aacf45abb87d22071314b72805dc6
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 18
|6 P:(DE-He78)cc78445a2cc45a9edf8ee2160a1adbb4
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-319H
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Addenda
|x 0
914 1 _ |y 2026
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-11-10
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CELL REP : 2022
|d 2025-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2025-08-21T14:50:29Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2025-08-21T14:50:29Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2025-08-21T14:50:29Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2025-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-11-10
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-11-10
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CELL REP : 2022
|d 2025-11-10
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2025-11-10
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2025-11-10
920 1 _ |0 I:(DE-He78)W120-20160331
|k W120
|l Proteomics
|x 0
920 1 _ |0 I:(DE-He78)DD01-20160331
|k DD01
|l DKTK Koordinierungsstelle Dresden
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)W120-20160331
980 _ _ |a I:(DE-He78)DD01-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21