Home > Publications database > Simultaneous mapping of water shift and B1 (WASABI)-Application to field-Inhomogeneity correction of CEST MRI data. |
Journal Article | DKFZ-2017-00115 |
; ; ; ; ;
2017
Wiley-Liss
New York, NY [u.a.]
This record in other databases:
Please use a persistent id in citations: doi:10.1002/mrm.26133
Abstract: Together with the development of MRI contrasts that are inherently small in their magnitude, increased magnetic field accuracy is also required. Hence, mapping of the static magnetic field (B0 ) and the excitation field (B1 ) is not only important to feedback shim algorithms, but also for postprocess contrast-correction procedures.A novel field-inhomogeneity mapping method is presented that allows simultaneous mapping of the water shift and B1 (WASABI) using an off-resonant rectangular preparation pulse. The induced Rabi oscillations lead to a sinc-like spectrum in the frequency-offset dimension and allow for determination of B0 by its symmetry axis and of B1 by its oscillation frequency.Stability of the WASABI method with regard to the influences of T1 , T2 , magnetization transfer, and repetition time was investigated and its convergence interval was verified. B0 and B1 maps obtained simultaneously by means of WASABI in the human brain at 3 T and 7 T can compete well with maps obtained by standard methods. Finally, the method was applied successfully for B0 and B1 correction of chemical exchange saturation transfer MRI (CEST-MRI) data of the human brain.The proposed WASABI method yields a novel simultaneous B0 and B1 mapping within 1 min that is robust and easy to implement. Magn Reson Med 77:571-580, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
![]() |
The record appears in these collections: |