000120161 001__ 120161
000120161 005__ 20240228135015.0
000120161 0247_ $$2doi$$a10.1016/j.cell.2014.04.001
000120161 0247_ $$2pmid$$apmid:24766799
000120161 0247_ $$2ISSN$$a0092-8674
000120161 0247_ $$2ISSN$$a1097-4172
000120161 0247_ $$2altmetric$$aaltmetric:2303593
000120161 037__ $$aDKFZ-2017-00743
000120161 041__ $$aeng
000120161 082__ $$a570
000120161 1001_ $$0P:(DE-He78)bb186a8b38fef24ebd6f11918ade985d$$aGronych, Jan$$b0$$eFirst author$$udkfz
000120161 245__ $$aConnect four with glioblastoma stem cell factors.
000120161 260__ $$a[Cambridge, Mass.]$$bCell Press$$c2014
000120161 3367_ $$2DRIVER$$aarticle
000120161 3367_ $$2DataCite$$aOutput Types/Journal article
000120161 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1491395870_23468$$xReview Article
000120161 3367_ $$2BibTeX$$aARTICLE
000120161 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000120161 3367_ $$00$$2EndNote$$aJournal Article
000120161 520__ $$aHierarchical cell state models, wherein a few stem-like tumor-propagating cells repopulate the tumor after therapy, are often invoked in cancer. Suvà et al. demonstrate a plastic developmental hierarchy in glioma cell populations by characterizing the epigenetic states of phenotypically distinct cells and identifying four factors sufficient to reprogram differentiated cells into a tumorigenic stem-like state.
000120161 536__ $$0G:(DE-HGF)POF3-312$$a312 - Functional and structural genomics (POF3-312)$$cPOF3-312$$fPOF III$$x0
000120161 588__ $$aDataset connected to CrossRef, PubMed,
000120161 7001_ $$0P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9$$aPfister, Stefan$$b1$$udkfz
000120161 7001_ $$0P:(DE-He78)551bb92841f634070997aa168d818492$$aJones, David$$b2$$eLast author$$udkfz
000120161 773__ $$0PERI:(DE-600)2001951-8$$a10.1016/j.cell.2014.04.001$$gVol. 157, no. 3, p. 525 - 527$$n3$$p525 - 527$$tCell$$v157$$x0092-8674$$y2014
000120161 909CO $$ooai:inrepo02.dkfz.de:120161$$pVDB
000120161 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)bb186a8b38fef24ebd6f11918ade985d$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000120161 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000120161 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)551bb92841f634070997aa168d818492$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000120161 9131_ $$0G:(DE-HGF)POF3-312$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunctional and structural genomics$$x0
000120161 9141_ $$y2014
000120161 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000120161 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000120161 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000120161 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000120161 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCELL : 2015
000120161 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000120161 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000120161 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000120161 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000120161 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000120161 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000120161 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000120161 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000120161 915__ $$0StatID:(DE-HGF)9925$$2StatID$$aIF >= 25$$bCELL : 2015
000120161 9201_ $$0I:(DE-He78)B060-20160331$$kB060$$lMolekulare Genetik$$x0
000120161 9201_ $$0I:(DE-He78)B062-20160331$$kB062$$lPädiatrische Neuroonkologie$$x1
000120161 980__ $$ajournal
000120161 980__ $$aVDB
000120161 980__ $$aI:(DE-He78)B060-20160331
000120161 980__ $$aI:(DE-He78)B062-20160331
000120161 980__ $$aUNRESTRICTED