Journal Article DKFZ-2017-01919

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Molecular analyses reveal close similarities between small cell carcinoma of the ovary, hypercalcemic type and atypical teratoid/rhabdoid tumor.

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2016
Impact Journals LLC [S.l.]

OncoTarget 7(2), 1732 - 1740 () [10.18632/oncotarget.6459]
 GO

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Small cell carcinoma of the ovary, hypercalcemic type (SCCOHT) is the most common undifferentiated ovarian malignancy diagnosed in women under age 40. We and others recently determined that germline and/or somatic deleterious mutations in SMARCA4 characterize SCCOHT. Alterations in this gene, or the related SWI/SNF chromatin remodeling gene SMARCB1, have been previously reported in atypical teratoid/rhabdoid tumors (ATRTs) and malignant rhabdoid tumors (MRTs). To further describe the somatic landscape of SCCOHT, we performed whole exome sequencing on 14 tumors and their matched normal tissues and compared their genomic alterations with those in ATRT and ovarian high grade serous carcinoma (HGSC). We confirmed that SMARCA4 is the only recurrently mutated gene in SCCOHT, and show that recurrent allelic imbalance is observed exclusively on chromosome 19p, where SMARCA4 resides. By comparing genomic alterations between SCCOHT, ATRT and HGSC, we demonstrate that SCCOHTs, like ATRTs, have a remarkably simple genome and harbor significantly fewer somatic protein-coding mutations and chromosomal alterations than HGSC. Furthermore, a comparison of global DNA methylation profiles of 45 SCCOHTs, 65 ATRTs, and 92 HGSCs demonstrates a strong epigenetic correlation between SCCOHT and ATRT. Our results further confirm that the genomic and epigenomic signatures of SCCOHT are more similar to those of ATRT than HGSC, supporting our previous hypothesis that SCCOHT is a rhabdoid tumor and should be renamed MRT of the ovary. Furthermore, we conclude that SMARCA4 inactivation is the main cause of SCCOHT, and that new distinct therapeutic approaches should be developed to specifically target this devastating tumor.

Keyword(s): Nuclear Proteins ; Transcription Factors ; SMARCA4 protein, human ; DNA Helicases

Classification:

Contributing Institute(s):
  1. Pädiatrische Neuroonkologie (B062)
  2. DKTK Heidelberg (L101)
Research Program(s):
  1. 312 - Functional and structural genomics (POF3-312) (POF3-312)

Appears in the scientific report 2016
Database coverage:
Medline ; BIOSIS Previews ; IF >= 5 ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Public records
Publications database

 Record created 2017-08-31, last modified 2024-02-28


Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)