Journal Article DKFZ-2017-05339

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Up-regulation of microRNA let-7c by quercetin inhibits pancreatic cancer progression by activation of Numbl.

 ;  ;  ;  ;  ;  ;

2016
Impact Journals LLC [S.l.]

OncoTarget 7(36), 58367 - 58380 () [10.18632/oncotarget.11122]
 GO

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Pancreatic Ductal Adenocarcinoma (PDA) is a highly malignant tumor with poor prognosis. MicroRNAs (miRs) may offer novel therapeutic approaches to treatment. The polyphenol quercetin, present in many fruits and vegetables, possesses anti-carcinogenic properties. To unravel the effect of quercetin to miR signaling we performed miR profiling in PDA cells before and after quercetin treatment, followed by biostatistical analysis. miR let-7c was among the top up-regulated candidates after quercetin treatment, as measured by qRT-PCR and confirmed in two established and one primary PDA cell lines. By computational analysis we identified the Notch-inhibitor Numbl as let-7c target gene. This was strengthened by luciferase assays, where lipofected let-7c mimics induced a Numbl 3-UTR wild type construct, but not the mutated counterpart. Let-7c induced Numbl mRNA and protein expression but inhibited Notch just like quercetin. It also inhibited colony formation, wound healing, and protein expression of progression markers. In vivo xenotransplantation of PDA cells and subsequent intravenous injection of let-7c resulted in a significant decrease in tumor mass without obvious toxic effects in the fertilized chick egg model. The delivery rate of the miR mimics to the tumor mass was 80%, whereas minor amounts were present in host tissue. By immunohistochemistry we demonstrated that let-7c inhibited Notch and progression markers but up-regulated Numbl. These findings show that quercetin-induced let-7c decreases tumor growth by posttranscriptional activation of Numbl and indirect inhibition of Notch.

Classification:

Contributing Institute(s):
  1. Biostatistik (C060)
Research Program(s):
  1. 313 - Cancer risk factors and prevention (POF3-313) (POF3-313)

Appears in the scientific report 2016
Database coverage:
Medline ; BIOSIS Previews ; IF >= 5 ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Public records
Publications database

 Record created 2017-11-13, last modified 2024-02-28


Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)