Journal Article DKFZ-2017-05380

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Implementation of mechanism of action biology-driven early drug development for children with cancer.

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2016
Elsevier Amsterdam [u.a.]

European journal of cancer 62, 124 - 131 () [10.1016/j.ejca.2016.04.001]
 GO

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: An urgent need remains for new paediatric oncology drugs to cure children who die from cancer and to reduce drug-related sequelae in survivors. In 2007, the European Paediatric Regulation came into law requiring industry to create paediatric drug (all types of medicinal products) development programmes alongside those for adults. Unfortunately, paediatric drug development is still largely centred on adult conditions and not a mechanism of action (MoA)-based model, even though this would be more logical for childhood tumours as these have much fewer non-synonymous coding mutations than adult malignancies. Recent large-scale sequencing by International Genome Consortium and Paediatric Cancer Genome Project has further shown that the genetic and epigenetic repertoire of driver mutations in specific childhood malignancies differs from more common adult-type malignancies. To bring about much needed change, a Paediatric Platform, ACCELERATE, was proposed in 2013 by the Cancer Drug Development Forum, Innovative Therapies for Children with Cancer, the European Network for Cancer Research in Children and Adolescents and the European Society for Paediatric Oncology. The Platform, comprising multiple stakeholders in paediatric oncology, has three working groups, one with responsibility for promoting and developing high-quality MoA-informed paediatric drug development programmes, including specific measures for adolescents. Key is the establishment of a freely accessible aggregated database of paediatric biological tumour drug targets to be aligned with an aggregated pipeline of drugs. This will enable prioritisation and conduct of early phase clinical paediatric trials to evaluate these drugs against promising therapeutic targets and to generate clinical paediatric efficacy and safety data in an accelerated time frame. Through this work, the Platform seeks to ensure that potentially effective drugs, where the MoA is known and thought to be relevant to paediatric malignancies, are evaluated in early phase clinical trials, and that this approach to generate pre-clinical and clinical data is systematically pursued by academia, sponsors, industry, and regulatory bodies to bring new paediatric oncology drugs to front-line therapy more rapidly.

Keyword(s): Antineoplastic Agents

Classification:

Contributing Institute(s):
  1. Pädiatrische Neuroonkologie (B062)
  2. KKE Pädiatrische Onkologie (G340)
  3. DKTK Heidelberg (L101)
Research Program(s):
  1. 317 - Translational cancer research (POF3-317) (POF3-317)

Appears in the scientific report 2016
Database coverage:
Medline ; BIOSIS Previews ; Current Contents - Clinical Medicine ; Current Contents - Life Sciences ; Ebsco Academic Search ; IF >= 5 ; JCR ; NCBI Molecular Biology Database ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Public records
Publications database

 Record created 2017-11-15, last modified 2024-02-28



Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)