000132902 001__ 132902
000132902 005__ 20240229105038.0
000132902 0247_ $$2doi$$a10.1002/mrm.27053
000132902 0247_ $$2pmid$$apmid:29327365
000132902 0247_ $$2ISSN$$a0740-3194
000132902 0247_ $$2ISSN$$a1522-2594
000132902 037__ $$aDKFZ-2018-00544
000132902 041__ $$aeng
000132902 082__ $$a610
000132902 1001_ $$aWenz, Daniel$$b0
000132902 245__ $$aMillimeter spatial resolution in vivo sodium MRI of the human eye at 7 T using a dedicated radiofrequency transceiver array.
000132902 260__ $$aNew York, NY [u.a.]$$bWiley-Liss$$c2018
000132902 3367_ $$2DRIVER$$aarticle
000132902 3367_ $$2DataCite$$aOutput Types/Journal article
000132902 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1526385514_14695
000132902 3367_ $$2BibTeX$$aARTICLE
000132902 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000132902 3367_ $$00$$2EndNote$$aJournal Article
000132902 520__ $$aThe aim of this study was to achieve millimeter spatial resolution sodium in vivo MRI of the human eye at 7 T using a dedicated six-channel transceiver array. We present a detailed description of the radiofrequency coil design, along with electromagnetic field and specific absorption ratio simulations, data validation, and in vivo application.Electromagnetic field and specific absorption ratio simulations were performed. Transmit field uniformity was optimized by using a multi-objective genetic algorithm. Transmit field mapping was conducted using a phase-sensitive method. An in vivo feasibility study was carried out with 3-dimensional density-adapted projection reconstruction imaging technique.Measured transmit field distribution agrees well with the one obtained from simulations. The specific absorption ratio simulations confirm that the radiofrequency coil is safe for clinical use. Our radiofrequency coil is light and conforms to an average human head. High spatial resolution (nominal 1.4 and 1.0 mm isotropic) sodium in vivo images of the human eye were acquired within scan times suitable for clinical applications (∼ 10 min).Three most important eye compartments in the context of sodium physiology were clearly delineated in all of the images: the vitreous humor, the aqueous humor, and the lens. Our results provide encouragement for further clinical studies. The implications for research into eye diseases including ocular melanoma, cataract, and glaucoma are discussed. Magn Reson Med 80:672-684, 2018. © 2018 International Society for Magnetic Resonance in Medicine.
000132902 536__ $$0G:(DE-HGF)POF3-315$$a315 - Imaging and radiooncology (POF3-315)$$cPOF3-315$$fPOF III$$x0
000132902 588__ $$aDataset connected to CrossRef, PubMed,
000132902 7001_ $$aKuehne, Andre$$b1
000132902 7001_ $$aHuelnhagen, Till$$b2
000132902 7001_ $$0P:(DE-He78)054fd7a5195b75b11fbdc5c360276011$$aNagel, Armin$$b3$$udkfz
000132902 7001_ $$aWaiczies, Helmar$$b4
000132902 7001_ $$aWeinberger, Oliver$$b5
000132902 7001_ $$aOezerdem, Celal$$b6
000132902 7001_ $$aStachs, Oliver$$b7
000132902 7001_ $$aLangner, Soenke$$b8
000132902 7001_ $$aSeeliger, Erdmann$$b9
000132902 7001_ $$aFlemming, Bert$$b10
000132902 7001_ $$aHodge, Russell$$b11
000132902 7001_ $$aNiendorf, Thoralf$$b12
000132902 773__ $$0PERI:(DE-600)1493786-4$$a10.1002/mrm.27053$$gVol. 80, no. 2, p. 672 - 684$$n2$$p672 - 684$$tMagnetic resonance in medicine$$v80$$x0740-3194$$y2018
000132902 909CO $$ooai:inrepo02.dkfz.de:132902$$pVDB
000132902 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)054fd7a5195b75b11fbdc5c360276011$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000132902 9131_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0
000132902 9141_ $$y2018
000132902 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000132902 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMAGN RESON MED : 2015
000132902 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000132902 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000132902 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000132902 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000132902 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000132902 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000132902 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000132902 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000132902 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000132902 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000132902 9201_ $$0I:(DE-He78)E020-20160331$$kE020$$lMedizinische Physik in der Radiologie$$x0
000132902 980__ $$ajournal
000132902 980__ $$aVDB
000132902 980__ $$aI:(DE-He78)E020-20160331
000132902 980__ $$aUNRESTRICTED