Journal Article DKFZ-2018-00544

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Millimeter spatial resolution in vivo sodium MRI of the human eye at 7 T using a dedicated radiofrequency transceiver array.

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2018
Wiley-Liss New York, NY [u.a.]

Magnetic resonance in medicine 80(2), 672 - 684 () [10.1002/mrm.27053]
 GO

This record in other databases:

Please use a persistent id in citations: doi:

Abstract: The aim of this study was to achieve millimeter spatial resolution sodium in vivo MRI of the human eye at 7 T using a dedicated six-channel transceiver array. We present a detailed description of the radiofrequency coil design, along with electromagnetic field and specific absorption ratio simulations, data validation, and in vivo application.Electromagnetic field and specific absorption ratio simulations were performed. Transmit field uniformity was optimized by using a multi-objective genetic algorithm. Transmit field mapping was conducted using a phase-sensitive method. An in vivo feasibility study was carried out with 3-dimensional density-adapted projection reconstruction imaging technique.Measured transmit field distribution agrees well with the one obtained from simulations. The specific absorption ratio simulations confirm that the radiofrequency coil is safe for clinical use. Our radiofrequency coil is light and conforms to an average human head. High spatial resolution (nominal 1.4 and 1.0 mm isotropic) sodium in vivo images of the human eye were acquired within scan times suitable for clinical applications (∼ 10 min).Three most important eye compartments in the context of sodium physiology were clearly delineated in all of the images: the vitreous humor, the aqueous humor, and the lens. Our results provide encouragement for further clinical studies. The implications for research into eye diseases including ocular melanoma, cataract, and glaucoma are discussed. Magn Reson Med 80:672-684, 2018. © 2018 International Society for Magnetic Resonance in Medicine.

Classification:

Contributing Institute(s):
  1. Medizinische Physik in der Radiologie (E020)
Research Program(s):
  1. 315 - Imaging and radiooncology (POF3-315) (POF3-315)

Appears in the scientific report 2018
Database coverage:
Medline ; BIOSIS Previews ; Current Contents - Clinical Medicine ; Current Contents - Life Sciences ; IF < 5 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > E020
Public records
Publications database

 Record created 2018-05-11, last modified 2024-02-29



Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)