% IMPORTANT: The following is UTF-8 encoded. This means that in the presence
% of non-ASCII characters, it will not work with BibTeX 0.99 or older.
% Instead, you should use an up-to-date BibTeX implementation like “bibtex8” or
% “biber”.
@ARTICLE{Dadaev:136023,
author = {T. Dadaev and E. J. Saunders and P. J. Newcombe and E.
Anokian and D. A. Leongamornlert and M. N. Brook and C.
Cieza-Borrella and M. Mijuskovic and S. Wakerell and A. A.
A. Olama and F. R. Schumacher and S. I. Berndt and S.
Benlloch and M. Ahmed and C. Goh and X. Sheng and Z. Zhang
and K. Muir and K. Govindasami and A. Lophatananon and V. L.
Stevens and S. M. Gapstur and B. D. Carter and C. M. Tangen
and P. Goodman and I. M. Thompson and J. Batra and S.
Chambers and L. Moya and J. Clements and L. Horvath and W.
Tilley and G. Risbridger and H. Gronberg and M. Aly and T.
Nordström and P. Pharoah and N. Pashayan and J. Schleutker
and T. L. J. Tammela and C. Sipeky and A. Auvinen and D.
Albanes and S. Weinstein and A. Wolk and N. Hakansson and C.
West and A. M. Dunning and N. Burnet and L. Mucci and E.
Giovannucci and G. Andriole and O. Cussenot and G.
Cancel-Tassin and S. Koutros and L. E. B. Freeman and K. D.
Sorensen and T. F. Orntoft and M. Borre and L. Maehle and E.
M. Grindedal and D. E. Neal and J. L. Donovan and F. C.
Hamdy and R. M. Martin and R. C. Travis and T. J. Key and R.
J. Hamilton and N. E. Fleshner and A. Finelli and S. A.
Ingles and M. C. Stern and B. Rosenstein and S. Kerns and H.
Ostrer and Y.-J. Lu and H.-W. Zhang and N. Feng and X. Mao
and X. Guo and G. Wang and Z. Sun and G. G. Giles and M. C.
Southey and R. J. MacInnis and L. M. FitzGerald and A. S.
Kibel and B. F. Drake and A. Vega and A. Gómez-Caamaño and
L. Fachal and R. Szulkin and M. Eklund and M. Kogevinas and
J. Llorca and G. Castaño-Vinyals and K. L. Penney and M.
Stampfer and J. Y. Park and T. A. Sellers and H.-Y. Lin and
J. L. Stanford and C. Cybulski and D. Wokolorczyk and J.
Lubinski and E. A. Ostrander and M. S. Geybels and B. G.
Nordestgaard and S. F. Nielsen and M. Weisher and R.
Bisbjerg and M. A. Røder and P. Iversen and H. Brenner$^*$
and K. Cuk$^*$ and B. Holleczek and C. Maier and M. Luedeke
and T. Schnoeller and J. Kim and C. J. Logothetis and E. M.
John and M. R. Teixeira and P. Paulo and M. Cardoso and S.
L. Neuhausen and L. Steele and Y. C. Ding and K. De Ruyck
and G. De Meerleer and P. Ost and A. Razack and J. Lim and
S.-H. Teo and D. W. Lin and L. F. Newcomb and D. Lessel and
M. Gamulin and T. Kulis and R. Kaneva and N. Usmani and C.
Slavov and V. Mitev and M. Parliament and S. Singhal and F.
Claessens and S. Joniau and T. Van den Broeck and S. Larkin
and P. A. Townsend and C. Aukim-Hastie and M. Gago-Dominguez
and J. E. Castelao and M. E. Martinez and M. J. Roobol and
G. Jenster and R. H. N. van Schaik and F. Menegaux and T.
Truong and Y. A. Koudou and J. Xu and K.-T. Khaw and L.
Cannon-Albright and H. Pandha and A. Michael and A. Kierzek
and S. N. Thibodeau and S. K. McDonnell and D. J. Schaid and
S. Lindstrom and C. Turman and J. Ma and D. J. Hunter and E.
Riboli and A. Siddiq and F. Canzian$^*$ and L. N. Kolonel
and L. Le Marchand and R. N. Hoover and M. J. Machiela and
P. Kraft and M. Freedman and F. Wiklund and S. Chanock and
B. E. Henderson and D. F. Easton and C. A. Haiman and R. A.
Eeles and D. V. Conti and Z. Kote-Jarai and M. Cook and A.
Thwaites and M. Guy and I. Whitmore and A. Morgan and C.
Fisher and S. Hazel and N. Livni and A. Spurdle and S.
Srinivasan and M.-A. Kedda and J. Aitken and R. Gardiner and
V. Hayes and L. Butler and R. Taylor and T. Yeadon and A.
Eckert and P. Saunders and A.-M. Haynes and M. Papargiris
and P. Kujala and K. Talala and T. Murtola and K. Taari and
D. Dearnaley and G. Barnett and S. Bentzen and R. Elliott
and H. Ranu and B. Hicks and A. Vogt and A. Hutchinson and
A. Cox and M. Davis and P. Brown and A. George and G.
Marsden and A. Lane and S. J. Lewis and C. Berry and G. S.
Kulkarni and A. Toi and A. Evans and A. R. Zlotta and T. H.
van der Kwast and T. Imai and S. Saito and J. Marzec and G.
Cao and J. Lin and J. Ling and M. Li and S.-C. Zhao and G.
Ren and Y. Yu and Y. Wu and J. Wu and B. Zhou and Y. Zhang
and J. Li and W. He and J. Guo and J. Pedersen and J. L.
Hopper and R. Milne and A. Klim and A. Carballo and R.
Lobato-Busto and P. Peleteiro and P. Calvo and M. Aguado and
J. M. Ruiz-Dominguez and L. Cecchini and L. Mengual and A.
Alcaraz and M. Bustamante and E. Gracia-Lavedan and T.
Dierssen-Sotos and I. Gomez-Acebo and J. Pow-Sang and H.
Park and B. Zachariah and W. Kluzniak and S. Kolb and P.
Klarskov and C. Stegmaier and W. Vogel and K. Herkommer and
P. Bohnert and S. Maia and M. P. Silva and S. De Langhe and
H. Thierens and M. H. Tan and A. T. Ong and Z. Kastelan and
E. Popov and D. Kachakova and A. Mitkova and A. Vlahova and
T. Dikov and S. Christova and A. Carracedo and C. Bangma and
F. H. Schroder and S. Cenee and B. Tretarre and X. Rebillard
and C. Mulot and M. Sanchez and J. Adolfsson and P. Stattin
and J.-E. Johansson and C. Cavalli-Bjoerkman and A. Karlsson
and M. Broms and H. Wu and L. Tillmans and S. Riska},
collaboration = {PRACTICAL},
title = {{F}ine-mapping of prostate cancer susceptibility loci in a
large meta-analysis identifies candidate causal variants.},
journal = {Nature Communications},
volume = {9},
number = {1},
issn = {2041-1723},
address = {London},
publisher = {Nature Publishing Group},
reportid = {DKFZ-2018-00723},
pages = {2256},
year = {2018},
abstract = {Prostate cancer is a polygenic disease with a large
heritable component. A number of common, low-penetrance
prostate cancer risk loci have been identified through GWAS.
Here we apply the Bayesian multivariate variable selection
algorithm JAM to fine-map 84 prostate cancer susceptibility
loci, using summary data from a large European ancestry
meta-analysis. We observe evidence for multiple independent
signals at 12 regions and 99 risk signals overall. Only 15
original GWAS tag SNPs remain among the catalogue of
candidate variants identified; the remainder are replaced by
more likely candidates. Biological annotation of our
credible set of variants indicates significant enrichment
within promoter and enhancer elements, and transcription
factor-binding sites, including AR, ERG and FOXA1. In 40
regions at least one variant is colocalised with an eQTL in
prostate cancer tissue. The refined set of candidate
variants substantially increase the proportion of familial
relative risk explained by these known susceptibility
regions, which highlights the importance of fine-mapping
studies and has implications for clinical risk profiling.},
cin = {C070 / G110 / L101 / C055},
ddc = {500},
cid = {I:(DE-He78)C070-20160331 / I:(DE-He78)G110-20160331 /
I:(DE-He78)L101-20160331 / I:(DE-He78)C055-20160331},
pnm = {313 - Cancer risk factors and prevention (POF3-313)},
pid = {G:(DE-HGF)POF3-313},
typ = {PUB:(DE-HGF)16},
pubmed = {pmid:29892050},
pmc = {pmc:PMC5995836},
doi = {10.1038/s41467-018-04109-8},
url = {https://inrepo02.dkfz.de/record/136023},
}