001     136855
005     20240229105103.0
024 7 _ |a 10.1088/1361-6560/aad43f
|2 doi
024 7 _ |a pmid:30020079
|2 pmid
024 7 _ |a 0031-9155
|2 ISSN
024 7 _ |a 1361-6560
|2 ISSN
024 7 _ |a altmetric:46407257
|2 altmetric
037 _ _ |a DKFZ-2018-01293
041 _ _ |a eng
082 _ _ |a 570
100 1 _ |a Dolde, Kai
|0 P:(DE-He78)ec2298bfd32b6affb60b6154f5481c31
|b 0
|e First author
|u dkfz
245 _ _ |a 4D dose calculation for pencil beam scanning proton therapy of pancreatic cancer using repeated 4DMRI datasets.
260 _ _ |a Bristol
|c 2018
|b IOP Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1543836986_20970
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a 4D magnetic resonance imaging (4DMRI) has a high potential for pancreatic cancer treatments using proton therapy, by providing time-resolved volumetric images with a high soft-tissue contrast without exposing the patient to any additional imaging dose. In this study, we aim to show the feasibility of 4D treatment planning for pencil beam scanning (PBS) proton therapy of pancreatic cancer, based on five repeated 4DMRI datasets and 4D dose calculations (4DDC) for one pancreatic cancer patient. To investigate the dosimetric impacts of organ motion, deformation vector fields were extracted from 4DMRI, which were then used to warp a static CT of the patient, so as to generate synthetic 4DCT (4DCT-MRI). CTV motion amplitudes  <15 mm were observed for this patient. The results from 4DDC show pronounced interplay effects in the CTV with dose homogeneity d5/d95 and dose coverage v95 being 1.14 and 91%, respectively, after a single fraction of the treatment. An averaging effect was further observed when increasing the number of fractions. Motion effects can become less dominant and dose homogeneity d5/d95  =  1.03 and dose coverage v95  =  [Formula: see text] within the CTV can be achieved after 28 fractions. The observed inter-fractional organ and tumor motion variations underline the importance of 4D imaging before and during PBS proton therapy.
536 _ _ |a 315 - Imaging and radiooncology (POF3-315)
|0 G:(DE-HGF)POF3-315
|c POF3-315
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Naumann, Patrick
|b 1
700 1 _ |a Dávid, Christian
|0 P:(DE-He78)172522ec1028ab781d9dfd17eaca4427
|b 2
|u dkfz
700 1 _ |a Gnirs, Regula
|0 P:(DE-He78)77bc493068847c689d894d2eda891c0c
|b 3
|u dkfz
700 1 _ |a Kachelrieß, Marc
|0 P:(DE-He78)f288a8f92f092ddb41d52b1aeb915323
|b 4
|u dkfz
700 1 _ |a Lomax, Antony John
|b 5
700 1 _ |a Saito, Nami
|b 6
700 1 _ |a Weber, Damien Charles
|b 7
700 1 _ |a Pfaffenberger, Asja
|0 P:(DE-He78)435853c50cec6666e13c237685053577
|b 8
|u dkfz
700 1 _ |a Zhang, Ye
|b 9
773 _ _ |a 10.1088/1361-6560/aad43f
|g Vol. 63, no. 16, p. 165005 -
|0 PERI:(DE-600)1473501-5
|n 16
|p 165005
|t Physics in medicine and biology
|v 63
|y 2018
|x 1361-6560
909 C O |p VDB
|o oai:inrepo02.dkfz.de:136855
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)ec2298bfd32b6affb60b6154f5481c31
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)172522ec1028ab781d9dfd17eaca4427
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)77bc493068847c689d894d2eda891c0c
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)f288a8f92f092ddb41d52b1aeb915323
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)435853c50cec6666e13c237685053577
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-315
|2 G:(DE-HGF)POF3-300
|v Imaging and radiooncology
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS MED BIOL : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-He78)E040-20160331
|k E040
|l Medizinische Physik in der Strahlentherapie
|x 0
920 1 _ |0 I:(DE-He78)E020-20160331
|k E020
|l Medizinische Physik in der Radiologie
|x 1
920 1 _ |0 I:(DE-He78)E010-20160331
|k E010
|l Radiologie
|x 2
920 1 _ |0 I:(DE-He78)E025-20160331
|k E025
|l Röntgenbildgebung und Computertomographie
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E040-20160331
980 _ _ |a I:(DE-He78)E020-20160331
980 _ _ |a I:(DE-He78)E010-20160331
980 _ _ |a I:(DE-He78)E025-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21