000143134 001__ 143134
000143134 005__ 20240229105153.0
000143134 0247_ $$2doi$$a10.18632/oncotarget.25594
000143134 0247_ $$2pmid$$apmid:29983895
000143134 0247_ $$2pmc$$apmc:PMC6033360
000143134 037__ $$aDKFZ-2019-00743
000143134 041__ $$aeng
000143134 082__ $$a610
000143134 1001_ $$0P:(DE-He78)f4c0be14a7bb58948e5800ccdcbfe9bc$$aRegnery, Sebastian$$b0$$eFirst author$$udkfz
000143134 245__ $$aChemical exchange saturation transfer MRI serves as predictor of early progression in glioblastoma patients.
000143134 260__ $$a[S.l.]$$bImpact Journals LLC$$c2018
000143134 3367_ $$2DRIVER$$aarticle
000143134 3367_ $$2DataCite$$aOutput Types/Journal article
000143134 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1555505715_13471
000143134 3367_ $$2BibTeX$$aARTICLE
000143134 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000143134 3367_ $$00$$2EndNote$$aJournal Article
000143134 520__ $$aTo prospectively investigate chemical exchange saturation transfer (CEST) MRI in glioblastoma patients as predictor of early tumor progression after first-line treatment.Twenty previously untreated glioblastoma patients underwent CEST MRI employing a 7T whole-body scanner. Nuclear Overhauser effect (NOE) as well as amide proton transfer (APT) CEST signals were isolated using Lorentzian difference (LD) analysis and relaxation compensated by the apparent exchange-dependent relaxation rate (AREX) evaluation. Additionally, NOE-weighted asymmetric magnetic transfer ratio (MTRasym) and downfield-NOE-suppressed APT (dns-APT) were calculated. Patient response to consecutive treatment was determined according to the RANO criteria. Mean signal intensities of each contrast in the whole tumor area were compared between early-progressive and stable disease.Pre-treatment tumor signal intensity differed significantly regarding responsiveness to first-line therapy in NOE-LD (p = 0.0001), NOE-weighted MTRasym (p = 0.0186) and dns-APT (p = 0.0328) contrasts. Hence, significant prediction of early progression was possible employing NOE-LD (AUC = 0.98, p = 0.0005), NOE-weighted MTRasym (AUC = 0.83, p = 0.0166) and dns-APT (AUC = 0.80, p = 0.0318). The NOE-LD provided the highest sensitivity (91%) and specificity (100%).CEST derived contrasts, particularly NOE-weighted imaging and dns-APT, yielded significant predictors of early progression after fist-line therapy in glioblastoma. Therefore, CEST MRI might be considered as non-invasive tool for customization of treatment in the future.
000143134 536__ $$0G:(DE-HGF)POF3-315$$a315 - Imaging and radiooncology (POF3-315)$$cPOF3-315$$fPOF III$$x0
000143134 588__ $$aDataset connected to CrossRef, PubMed,
000143134 7001_ $$aAdeberg, Sebastian$$b1
000143134 7001_ $$0P:(DE-HGF)0$$aDreher, Constantin$$b2
000143134 7001_ $$0P:(DE-He78)7c89f57d41cbe565e6154bf1997b9178$$aOberhollenzer, Johanna$$b3$$udkfz
000143134 7001_ $$0P:(DE-He78)65fe7a46247e2ac4b15f194631c56cd1$$aMeissner, Jan-Eric$$b4$$udkfz
000143134 7001_ $$0P:(DE-HGF)0$$aGoerke, Steffen$$b5
000143134 7001_ $$0P:(DE-He78)98b696ed60c17f4ddd0da9fdc20a2492$$aWindschuh, Johannes$$b6$$udkfz
000143134 7001_ $$0P:(DE-HGF)0$$aDeike-Hofmann, Katerina$$b7
000143134 7001_ $$0P:(DE-He78)d2d971750bce6217eb90fff9b01e61f9$$aBickelhaupt, Sebastian$$b8$$udkfz
000143134 7001_ $$aZaiss, Moritz$$b9
000143134 7001_ $$0P:(DE-He78)77588f5b9413339755a66e739d316c7d$$aRadbruch, Alexander$$b10$$udkfz
000143134 7001_ $$aBendszus, Martin$$b11
000143134 7001_ $$0P:(DE-He78)92e9783ca7025f36ce14e12cd348d2ee$$aWick, Wolfgang$$b12$$udkfz
000143134 7001_ $$aUnterberg, Andreas$$b13
000143134 7001_ $$aRieken, Stefan$$b14
000143134 7001_ $$aDebus, Jürgen$$b15
000143134 7001_ $$0P:(DE-He78)29b2f01310f7022916255ddba2750f9b$$aBachert, Peter$$b16$$udkfz
000143134 7001_ $$0P:(DE-He78)022611a2317e4de40fd912e0a72293a8$$aLadd, Mark$$b17$$udkfz
000143134 7001_ $$0P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec$$aSchlemmer, Heinz-Peter$$b18$$udkfz
000143134 7001_ $$0P:(DE-He78)c6e31fb8f19e185e254174554a0cccfc$$aPaech, Daniel$$b19$$eLast author$$udkfz
000143134 773__ $$0PERI:(DE-600)2560162-3$$a10.18632/oncotarget.25594$$gVol. 9, no. 47$$n47$$p28772-28783$$tOncoTarget$$v9$$x1949-2553$$y2018
000143134 909CO $$ooai:inrepo02.dkfz.de:143134$$pVDB
000143134 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)f4c0be14a7bb58948e5800ccdcbfe9bc$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000143134 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000143134 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)7c89f57d41cbe565e6154bf1997b9178$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000143134 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)65fe7a46247e2ac4b15f194631c56cd1$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000143134 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000143134 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)98b696ed60c17f4ddd0da9fdc20a2492$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000143134 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000143134 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)d2d971750bce6217eb90fff9b01e61f9$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ
000143134 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)77588f5b9413339755a66e739d316c7d$$aDeutsches Krebsforschungszentrum$$b10$$kDKFZ
000143134 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)92e9783ca7025f36ce14e12cd348d2ee$$aDeutsches Krebsforschungszentrum$$b12$$kDKFZ
000143134 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)29b2f01310f7022916255ddba2750f9b$$aDeutsches Krebsforschungszentrum$$b16$$kDKFZ
000143134 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)022611a2317e4de40fd912e0a72293a8$$aDeutsches Krebsforschungszentrum$$b17$$kDKFZ
000143134 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec$$aDeutsches Krebsforschungszentrum$$b18$$kDKFZ
000143134 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c6e31fb8f19e185e254174554a0cccfc$$aDeutsches Krebsforschungszentrum$$b19$$kDKFZ
000143134 9131_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0
000143134 9141_ $$y2018
000143134 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000143134 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000143134 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000143134 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000143134 9201_ $$0I:(DE-He78)E010-20160331$$kE010$$lRadiologie$$x0
000143134 9201_ $$0I:(DE-He78)E020-20160331$$kE020$$lMedizinische Physik in der Radiologie$$x1
000143134 9201_ $$0I:(DE-He78)E012-20160331$$kE012$$lNeuroonkologische Bildgebung$$x2
000143134 9201_ $$0I:(DE-He78)G370-20160331$$kG370$$lKKE Neuroonkologie$$x3
000143134 980__ $$ajournal
000143134 980__ $$aVDB
000143134 980__ $$aI:(DE-He78)E010-20160331
000143134 980__ $$aI:(DE-He78)E020-20160331
000143134 980__ $$aI:(DE-He78)E012-20160331
000143134 980__ $$aI:(DE-He78)G370-20160331
000143134 980__ $$aUNRESTRICTED