000143813 001__ 143813
000143813 005__ 20240229112609.0
000143813 0247_ $$2doi$$a10.1158/1055-9965.EPI-18-1120
000143813 0247_ $$2pmid$$apmid:30948451
000143813 0247_ $$2ISSN$$a1055-9965
000143813 0247_ $$2ISSN$$a1538-7755
000143813 0247_ $$2altmetric$$aaltmetric:58708194
000143813 037__ $$aDKFZ-2019-01375
000143813 041__ $$aeng
000143813 082__ $$a610
000143813 1001_ $$aSasamoto, Naoko$$b0
000143813 245__ $$aPredicting Circulating CA125 Levels among Healthy Premenopausal Women.
000143813 260__ $$aPhiladelphia, Pa.$$bAACR$$c2019
000143813 3367_ $$2DRIVER$$aarticle
000143813 3367_ $$2DataCite$$aOutput Types/Journal article
000143813 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1559651737_6511
000143813 3367_ $$2BibTeX$$aARTICLE
000143813 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000143813 3367_ $$00$$2EndNote$$aJournal Article
000143813 520__ $$aBackground: Cancer antigen 125 (CA125) is the most promising ovarian cancer screening biomarker to date. Multiple studies reported CA125 levels vary by personal characteristics, which could inform personalized CA125 thresholds. However, this has not been well described in premenopausal women.Methods: We evaluated predictors of CA125 levels among 815 premenopausal women from the New England Case Control Study (NEC). We developed linear and dichotomous (≥35 U/mL) CA125 prediction models and externally validated an abridged model restricting to available predictors among 473 premenopausal women in the European Prospective Investigation into Cancer and Nutrition Study (EPIC).Results: The final linear CA125 prediction model included age, race, tubal ligation, endometriosis, menstrual phase at blood draw, and fibroids, which explained 7% of the total variance of CA125. The correlation between observed and predicted CA125 levels based on the abridged model (including age, race, and menstrual phase at blood draw) had similar correlation coefficients in NEC (r = 0.22) and in EPIC (r = 0.22). The dichotomous CA125 prediction model included age, tubal ligation, endometriosis, prior personal cancer diagnosis, family history of ovarian cancer, number of miscarriages, menstrual phase at blood draw, and smoking status with AUC of 0.83. The abridged dichotomous model (including age, number of miscarriages, menstrual phase at blood draw, and smoking status) showed similar AUCs in NEC (0.73) and in EPIC (0.78).Conclusions: We identified a combination of factors associated with CA125 levels in premenopausal women.Impact: Our model could be valuable in identifying healthy women likely to have elevated CA125 and consequently improve its specificity for ovarian cancer screening.
000143813 536__ $$0G:(DE-HGF)POF3-313$$a313 - Cancer risk factors and prevention (POF3-313)$$cPOF3-313$$fPOF III$$x0
000143813 588__ $$aDataset connected to CrossRef, PubMed,
000143813 7001_ $$aBabic, Ana$$b1
000143813 7001_ $$aRosner, Bernard A$$b2
000143813 7001_ $$0P:(DE-He78)74a6af8347ec5cbd4b77e562e10ca1f2$$aTurzanski-Fortner, Renée$$b3$$udkfz
000143813 7001_ $$aVitonis, Allison F$$b4
000143813 7001_ $$aYamamoto, Hidemi$$b5
000143813 7001_ $$aFichorova, Raina N$$b6
000143813 7001_ $$00000-0003-4385-2097$$aTjønneland, Anne$$b7
000143813 7001_ $$aHansen, Louise$$b8
000143813 7001_ $$aOvervad, Kim$$b9
000143813 7001_ $$aKvaskoff, Marina$$b10
000143813 7001_ $$00000-0001-8380-3439$$aFournier, Agnès$$b11
000143813 7001_ $$aRomana Mancini, Francesca$$b12
000143813 7001_ $$aBoeing, Heiner$$b13
000143813 7001_ $$aTrichopoulou, Antonia$$b14
000143813 7001_ $$aPeppa, Eleni$$b15
000143813 7001_ $$00000-0002-3275-2026$$aKarakatsani, Anna$$b16
000143813 7001_ $$00000-0002-5558-2437$$aPalli, Domenico$$b17
000143813 7001_ $$aPala, Valeria$$b18
000143813 7001_ $$aMattiello, Amalia$$b19
000143813 7001_ $$00000-0003-2666-414X$$aTumino, Rosario$$b20
000143813 7001_ $$aGrasso, Chiara C$$b21
000143813 7001_ $$00000-0002-2360-913X$$aOnland-Moret, N Charlotte$$b22
000143813 7001_ $$00000-0003-2237-0128$$aWeiderpass, Elisabete$$b23
000143813 7001_ $$aQuirós, J Ramón$$b24
000143813 7001_ $$00000-0001-6224-1764$$aLujan-Barroso, Leila$$b25
000143813 7001_ $$00000-0002-9972-9779$$aRodríguez-Barranco, Miguel$$b26
000143813 7001_ $$aColorado-Yohar, Sandra$$b27
000143813 7001_ $$00000-0001-6750-1270$$aBarricarte, Aurelio$$b28
000143813 7001_ $$aDorronsoro, Miren$$b29
000143813 7001_ $$aIdahl, Annika$$b30
000143813 7001_ $$aLundin, Eva$$b31
000143813 7001_ $$00000-0002-1116-5199$$aSartor, Hanna$$b32
000143813 7001_ $$aKhaw, Kay-Tee$$b33
000143813 7001_ $$00000-0003-2294-307X$$aKey, Timothy J$$b34
000143813 7001_ $$aMuller, David$$b35
000143813 7001_ $$aRiboli, Elio$$b36
000143813 7001_ $$aGunter, Marc J$$b37
000143813 7001_ $$aDossus, Laure$$b38
000143813 7001_ $$0P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a$$aKaaks, Rudolf$$b39$$udkfz
000143813 7001_ $$aCramer, Daniel W$$b40
000143813 7001_ $$00000-0002-6986-7046$$aTworoger, Shelley S$$b41
000143813 7001_ $$aTerry, Kathryn L$$b42
000143813 773__ $$0PERI:(DE-600)2036781-8$$a10.1158/1055-9965.EPI-18-1120$$gVol. 28, no. 6, p. 1076 - 1085$$n6$$p1076 - 1085$$tCancer epidemiology, biomarkers & prevention$$v28$$x1538-7755$$y2019
000143813 909CO $$ooai:inrepo02.dkfz.de:143813$$pVDB
000143813 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)74a6af8347ec5cbd4b77e562e10ca1f2$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000143813 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a$$aDeutsches Krebsforschungszentrum$$b39$$kDKFZ
000143813 9131_ $$0G:(DE-HGF)POF3-313$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vCancer risk factors and prevention$$x0
000143813 9141_ $$y2019
000143813 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCANCER EPIDEM BIOMAR : 2017
000143813 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000143813 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000143813 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000143813 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000143813 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000143813 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000143813 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000143813 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000143813 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000143813 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000143813 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000143813 9201_ $$0I:(DE-He78)C020-20160331$$kC020$$lEpidemiologie von Krebserkrankungen$$x0
000143813 980__ $$ajournal
000143813 980__ $$aVDB
000143813 980__ $$aI:(DE-He78)C020-20160331
000143813 980__ $$aUNRESTRICTED