001     143813
005     20240229112609.0
024 7 _ |a 10.1158/1055-9965.EPI-18-1120
|2 doi
024 7 _ |a pmid:30948451
|2 pmid
024 7 _ |a 1055-9965
|2 ISSN
024 7 _ |a 1538-7755
|2 ISSN
024 7 _ |a altmetric:58708194
|2 altmetric
037 _ _ |a DKFZ-2019-01375
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Sasamoto, Naoko
|b 0
245 _ _ |a Predicting Circulating CA125 Levels among Healthy Premenopausal Women.
260 _ _ |a Philadelphia, Pa.
|c 2019
|b AACR
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1559651737_6511
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Background: Cancer antigen 125 (CA125) is the most promising ovarian cancer screening biomarker to date. Multiple studies reported CA125 levels vary by personal characteristics, which could inform personalized CA125 thresholds. However, this has not been well described in premenopausal women.Methods: We evaluated predictors of CA125 levels among 815 premenopausal women from the New England Case Control Study (NEC). We developed linear and dichotomous (≥35 U/mL) CA125 prediction models and externally validated an abridged model restricting to available predictors among 473 premenopausal women in the European Prospective Investigation into Cancer and Nutrition Study (EPIC).Results: The final linear CA125 prediction model included age, race, tubal ligation, endometriosis, menstrual phase at blood draw, and fibroids, which explained 7% of the total variance of CA125. The correlation between observed and predicted CA125 levels based on the abridged model (including age, race, and menstrual phase at blood draw) had similar correlation coefficients in NEC (r = 0.22) and in EPIC (r = 0.22). The dichotomous CA125 prediction model included age, tubal ligation, endometriosis, prior personal cancer diagnosis, family history of ovarian cancer, number of miscarriages, menstrual phase at blood draw, and smoking status with AUC of 0.83. The abridged dichotomous model (including age, number of miscarriages, menstrual phase at blood draw, and smoking status) showed similar AUCs in NEC (0.73) and in EPIC (0.78).Conclusions: We identified a combination of factors associated with CA125 levels in premenopausal women.Impact: Our model could be valuable in identifying healthy women likely to have elevated CA125 and consequently improve its specificity for ovarian cancer screening.
536 _ _ |a 313 - Cancer risk factors and prevention (POF3-313)
|0 G:(DE-HGF)POF3-313
|c POF3-313
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Babic, Ana
|b 1
700 1 _ |a Rosner, Bernard A
|b 2
700 1 _ |a Turzanski-Fortner, Renée
|0 P:(DE-He78)74a6af8347ec5cbd4b77e562e10ca1f2
|b 3
|u dkfz
700 1 _ |a Vitonis, Allison F
|b 4
700 1 _ |a Yamamoto, Hidemi
|b 5
700 1 _ |a Fichorova, Raina N
|b 6
700 1 _ |a Tjønneland, Anne
|0 0000-0003-4385-2097
|b 7
700 1 _ |a Hansen, Louise
|b 8
700 1 _ |a Overvad, Kim
|b 9
700 1 _ |a Kvaskoff, Marina
|b 10
700 1 _ |a Fournier, Agnès
|0 0000-0001-8380-3439
|b 11
700 1 _ |a Romana Mancini, Francesca
|b 12
700 1 _ |a Boeing, Heiner
|b 13
700 1 _ |a Trichopoulou, Antonia
|b 14
700 1 _ |a Peppa, Eleni
|b 15
700 1 _ |a Karakatsani, Anna
|0 0000-0002-3275-2026
|b 16
700 1 _ |a Palli, Domenico
|0 0000-0002-5558-2437
|b 17
700 1 _ |a Pala, Valeria
|b 18
700 1 _ |a Mattiello, Amalia
|b 19
700 1 _ |a Tumino, Rosario
|0 0000-0003-2666-414X
|b 20
700 1 _ |a Grasso, Chiara C
|b 21
700 1 _ |a Onland-Moret, N Charlotte
|0 0000-0002-2360-913X
|b 22
700 1 _ |a Weiderpass, Elisabete
|0 0000-0003-2237-0128
|b 23
700 1 _ |a Quirós, J Ramón
|b 24
700 1 _ |a Lujan-Barroso, Leila
|0 0000-0001-6224-1764
|b 25
700 1 _ |a Rodríguez-Barranco, Miguel
|0 0000-0002-9972-9779
|b 26
700 1 _ |a Colorado-Yohar, Sandra
|b 27
700 1 _ |a Barricarte, Aurelio
|0 0000-0001-6750-1270
|b 28
700 1 _ |a Dorronsoro, Miren
|b 29
700 1 _ |a Idahl, Annika
|b 30
700 1 _ |a Lundin, Eva
|b 31
700 1 _ |a Sartor, Hanna
|0 0000-0002-1116-5199
|b 32
700 1 _ |a Khaw, Kay-Tee
|b 33
700 1 _ |a Key, Timothy J
|0 0000-0003-2294-307X
|b 34
700 1 _ |a Muller, David
|b 35
700 1 _ |a Riboli, Elio
|b 36
700 1 _ |a Gunter, Marc J
|b 37
700 1 _ |a Dossus, Laure
|b 38
700 1 _ |a Kaaks, Rudolf
|0 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a
|b 39
|u dkfz
700 1 _ |a Cramer, Daniel W
|b 40
700 1 _ |a Tworoger, Shelley S
|0 0000-0002-6986-7046
|b 41
700 1 _ |a Terry, Kathryn L
|b 42
773 _ _ |a 10.1158/1055-9965.EPI-18-1120
|g Vol. 28, no. 6, p. 1076 - 1085
|0 PERI:(DE-600)2036781-8
|n 6
|p 1076 - 1085
|t Cancer epidemiology, biomarkers & prevention
|v 28
|y 2019
|x 1538-7755
909 C O |o oai:inrepo02.dkfz.de:143813
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)74a6af8347ec5cbd4b77e562e10ca1f2
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 39
|6 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|2 G:(DE-HGF)POF3-300
|v Cancer risk factors and prevention
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2019
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CANCER EPIDEM BIOMAR : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l Epidemiologie von Krebserkrankungen
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21