001     143929
005     20240229112613.0
024 7 _ |a 10.1038/s41591-019-0462-y
|2 doi
024 7 _ |a pmid:31160815
|2 pmid
024 7 _ |a 1078-8956
|2 ISSN
024 7 _ |a 1546-170X
|2 ISSN
024 7 _ |a altmetric:61462066
|2 altmetric
037 _ _ |a DKFZ-2019-01487
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Kather, Jakob Nikolas
|0 P:(DE-He78)761f5d0f73e0d8f170394b29448a9e8d
|b 0
|e First author
|u dkfz
245 _ _ |a Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer.
260 _ _ |a New York, NY
|c 2019
|b Nature America Inc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1575028106_27327
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer.
536 _ _ |a 314 - Tumor immunology (POF3-314)
|0 G:(DE-HGF)POF3-314
|c POF3-314
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Pearson, Alexander T
|b 1
700 1 _ |a Halama, Niels
|0 P:(DE-He78)0a4053be7ffd6aa9bef69de28753a601
|b 2
|u dkfz
700 1 _ |a Jäger, Dirk
|0 P:(DE-He78)ed0321409c9cde20b380ae663dbcefd1
|b 3
|u dkfz
700 1 _ |a Krause, Jeremias
|0 0000-0001-9915-7400
|b 4
700 1 _ |a Loosen, Sven H
|b 5
700 1 _ |a Marx, Alexander
|b 6
700 1 _ |a Boor, Peter
|0 0000-0001-9921-4284
|b 7
700 1 _ |a Tacke, Frank
|b 8
700 1 _ |a Neumann, Ulf Peter
|b 9
700 1 _ |a Grabsch, Heike I
|0 0000-0001-9520-6228
|b 10
700 1 _ |a Yoshikawa, Takaki
|b 11
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 12
|u dkfz
700 1 _ |a Chang-Claude, Jenny
|0 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253
|b 13
|u dkfz
700 1 _ |a Hoffmeister, Michael
|0 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f
|b 14
|u dkfz
700 1 _ |a Trautwein, Christian
|b 15
700 1 _ |a Luedde, Tom
|0 0000-0002-6288-8821
|b 16
773 _ _ |a 10.1038/s41591-019-0462-y
|0 PERI:(DE-600)1484517-9
|n 7
|p 1054-1056
|t Nature medicine
|v 25
|y 2019
|x 1546-170X
909 C O |p VDB
|o oai:inrepo02.dkfz.de:143929
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)761f5d0f73e0d8f170394b29448a9e8d
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)0a4053be7ffd6aa9bef69de28753a601
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)ed0321409c9cde20b380ae663dbcefd1
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 12
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 13
|6 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 14
|6 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-314
|2 G:(DE-HGF)POF3-300
|v Tumor immunology
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2019
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT MED : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 30
|0 StatID:(DE-HGF)9930
|2 StatID
|b NAT MED : 2017
920 1 _ |0 I:(DE-He78)D120-20160331
|k D120
|l Angewandte Tumor-Immunität
|x 0
920 1 _ |0 I:(DE-He78)D240-20160331
|k D240
|l Translationale Immuntherapie
|x 1
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l Klinische Epidemiologie und Alternsforschung
|x 2
920 1 _ |0 I:(DE-He78)C120-20160331
|k C120
|l Präventive Onkologie
|x 3
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l Epidemiologie von Krebserkrankungen
|x 4
920 1 _ |0 I:(DE-He78)L101-20160331
|k L101
|l DKTK Heidelberg
|x 5
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)D120-20160331
980 _ _ |a I:(DE-He78)D240-20160331
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a I:(DE-He78)C120-20160331
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a I:(DE-He78)L101-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21