Home > Publications database > Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer. > print |
001 | 143929 | ||
005 | 20240229112613.0 | ||
024 | 7 | _ | |a 10.1038/s41591-019-0462-y |2 doi |
024 | 7 | _ | |a pmid:31160815 |2 pmid |
024 | 7 | _ | |a 1078-8956 |2 ISSN |
024 | 7 | _ | |a 1546-170X |2 ISSN |
024 | 7 | _ | |a altmetric:61462066 |2 altmetric |
037 | _ | _ | |a DKFZ-2019-01487 |
041 | _ | _ | |a eng |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Kather, Jakob Nikolas |0 P:(DE-He78)761f5d0f73e0d8f170394b29448a9e8d |b 0 |e First author |u dkfz |
245 | _ | _ | |a Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer. |
260 | _ | _ | |a New York, NY |c 2019 |b Nature America Inc. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1575028106_27327 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer. |
536 | _ | _ | |a 314 - Tumor immunology (POF3-314) |0 G:(DE-HGF)POF3-314 |c POF3-314 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, |
700 | 1 | _ | |a Pearson, Alexander T |b 1 |
700 | 1 | _ | |a Halama, Niels |0 P:(DE-He78)0a4053be7ffd6aa9bef69de28753a601 |b 2 |u dkfz |
700 | 1 | _ | |a Jäger, Dirk |0 P:(DE-He78)ed0321409c9cde20b380ae663dbcefd1 |b 3 |u dkfz |
700 | 1 | _ | |a Krause, Jeremias |0 0000-0001-9915-7400 |b 4 |
700 | 1 | _ | |a Loosen, Sven H |b 5 |
700 | 1 | _ | |a Marx, Alexander |b 6 |
700 | 1 | _ | |a Boor, Peter |0 0000-0001-9921-4284 |b 7 |
700 | 1 | _ | |a Tacke, Frank |b 8 |
700 | 1 | _ | |a Neumann, Ulf Peter |b 9 |
700 | 1 | _ | |a Grabsch, Heike I |0 0000-0001-9520-6228 |b 10 |
700 | 1 | _ | |a Yoshikawa, Takaki |b 11 |
700 | 1 | _ | |a Brenner, Hermann |0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2 |b 12 |u dkfz |
700 | 1 | _ | |a Chang-Claude, Jenny |0 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253 |b 13 |u dkfz |
700 | 1 | _ | |a Hoffmeister, Michael |0 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f |b 14 |u dkfz |
700 | 1 | _ | |a Trautwein, Christian |b 15 |
700 | 1 | _ | |a Luedde, Tom |0 0000-0002-6288-8821 |b 16 |
773 | _ | _ | |a 10.1038/s41591-019-0462-y |0 PERI:(DE-600)1484517-9 |n 7 |p 1054-1056 |t Nature medicine |v 25 |y 2019 |x 1546-170X |
909 | C | O | |p VDB |o oai:inrepo02.dkfz.de:143929 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 0 |6 P:(DE-He78)761f5d0f73e0d8f170394b29448a9e8d |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 2 |6 P:(DE-He78)0a4053be7ffd6aa9bef69de28753a601 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 3 |6 P:(DE-He78)ed0321409c9cde20b380ae663dbcefd1 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 12 |6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 13 |6 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 14 |6 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f |
913 | 1 | _ | |a DE-HGF |l Krebsforschung |1 G:(DE-HGF)POF3-310 |0 G:(DE-HGF)POF3-314 |2 G:(DE-HGF)POF3-300 |v Tumor immunology |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Gesundheit |
914 | 1 | _ | |y 2019 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NAT MED : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1110 |2 StatID |b Current Contents - Clinical Medicine |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
915 | _ | _ | |a IF >= 30 |0 StatID:(DE-HGF)9930 |2 StatID |b NAT MED : 2017 |
920 | 1 | _ | |0 I:(DE-He78)D120-20160331 |k D120 |l Angewandte Tumor-Immunität |x 0 |
920 | 1 | _ | |0 I:(DE-He78)D240-20160331 |k D240 |l Translationale Immuntherapie |x 1 |
920 | 1 | _ | |0 I:(DE-He78)C070-20160331 |k C070 |l Klinische Epidemiologie und Alternsforschung |x 2 |
920 | 1 | _ | |0 I:(DE-He78)C120-20160331 |k C120 |l Präventive Onkologie |x 3 |
920 | 1 | _ | |0 I:(DE-He78)C020-20160331 |k C020 |l Epidemiologie von Krebserkrankungen |x 4 |
920 | 1 | _ | |0 I:(DE-He78)L101-20160331 |k L101 |l DKTK Heidelberg |x 5 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)D120-20160331 |
980 | _ | _ | |a I:(DE-He78)D240-20160331 |
980 | _ | _ | |a I:(DE-He78)C070-20160331 |
980 | _ | _ | |a I:(DE-He78)C120-20160331 |
980 | _ | _ | |a I:(DE-He78)C020-20160331 |
980 | _ | _ | |a I:(DE-He78)L101-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|