http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer.
Kather, J. N. (First author)DKFZ* ; Pearson, A. T. ; Halama, N.DKFZ* ; Jäger, D.DKFZ* ; Krause, J. ; Loosen, S. H. ; Marx, A. ; Boor, P. ; Tacke, F. ; Neumann, U. P. ; Grabsch, H. I. ; Yoshikawa, T. ; Brenner, H.DKFZ* ; Chang-Claude, J.DKFZ* ; Hoffmeister, M.DKFZ* ; Trautwein, C. ; Luedde, T.
2019
Nature America Inc.
New York, NY
This record in other databases:

Please use a persistent id in citations: doi:10.1038/s41591-019-0462-y
Abstract: Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer.
Contributing Institute(s):
- Angewandte Tumor-Immunität (D120)
- Translationale Immuntherapie (D240)
- Klinische Epidemiologie und Alternsforschung (C070)
- Präventive Onkologie (C120)
- Epidemiologie von Krebserkrankungen (C020)
- DKTK Heidelberg (L101)
Research Program(s):
- 314 - Tumor immunology (POF3-314) (POF3-314)
Appears in the scientific report
2019
Database coverage:
; BIOSIS Previews ; Clarivate Analytics Master Journal List ; Current Contents - Clinical Medicine ; Current Contents - Life Sciences ; Ebsco Academic Search ; IF >= 30 ; JCR ; NCBI Molecular Biology Database ; Nationallizenz

; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection