001     144770
005     20240229112637.0
024 7 _ |a 10.1016/j.ejca.2019.07.019
|2 doi
024 7 _ |a pmid:31518967
|2 pmid
024 7 _ |a 0014-2964
|2 ISSN
024 7 _ |a 0959-8049
|2 ISSN
024 7 _ |a 1879-0852
|2 ISSN
024 7 _ |a 1879-2995
|2 ISSN
024 7 _ |a altmetric:66598192
|2 altmetric
037 _ _ |a DKFZ-2019-02202
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Hekler, Achim
|0 P:(DE-HGF)0
|b 0
|e First author
245 _ _ |a Superior skin cancer classification by the combination of human and artificial intelligence.
260 _ _ |a Amsterdam [u.a.]
|c 2019
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1568617950_17480
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In recent studies, convolutional neural networks (CNNs) outperformed dermatologists in distinguishing dermoscopic images of melanoma and nevi. In these studies, dermatologists and artificial intelligence were considered as opponents. However, the combination of classifiers frequently yields superior results, both in machine learning and among humans. In this study, we investigated the potential benefit of combining human and artificial intelligence for skin cancer classification.Using 11,444 dermoscopic images, which were divided into five diagnostic categories, novel deep learning techniques were used to train a single CNN. Then, both 112 dermatologists of 13 German university hospitals and the trained CNN independently classified a set of 300 biopsy-verified skin lesions into those five classes. Taking into account the certainty of the decisions, the two independently determined diagnoses were combined to a new classifier with the help of a gradient boosting method. The primary end-point of the study was the correct classification of the images into five designated categories, whereas the secondary end-point was the correct classification of lesions as either benign or malignant (binary classification).Regarding the multiclass task, the combination of man and machine achieved an accuracy of 82.95%. This was 1.36% higher than the best of the two individual classifiers (81.59% achieved by the CNN). Owing to the class imbalance in the binary problem, sensitivity, but not accuracy, was examined and demonstrated to be superior (89%) to the best individual classifier (CNN with 86.1%). The specificity in the combined classifier decreased from 89.2% to 84%. However, at an equal sensitivity of 89%, the CNN achieved a specificity of only 81.5% INTERPRETATION: Our findings indicate that the combination of human and artificial intelligence achieves superior results over the independent results of both of these systems.
536 _ _ |a 311 - Signalling pathways, cell and tumor biology (POF3-311)
|0 G:(DE-HGF)POF3-311
|c POF3-311
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Utikal, Jochen S
|0 P:(DE-He78)a229f7724466e7efadf4a1ace1ff8af3
|b 1
|u dkfz
700 1 _ |a Enk, Alexander H
|b 2
700 1 _ |a Hauschild, Axel
|b 3
700 1 _ |a Weichenthal, Michael
|b 4
700 1 _ |a Maron, Roman C
|b 5
700 1 _ |a Berking, Carola
|b 6
700 1 _ |a Haferkamp, Sebastian
|b 7
700 1 _ |a Klode, Joachim
|b 8
700 1 _ |a Schadendorf, Dirk
|b 9
700 1 _ |a Schilling, Bastian
|b 10
700 1 _ |a Holland-Letz, Tim
|0 P:(DE-He78)457c042884c901eb0a02c18bb1d30103
|b 11
|u dkfz
700 1 _ |a Izar, Benjamin
|b 12
700 1 _ |a von Kalle, Christof
|0 P:(DE-He78)5bacb661d5d7c0220d8f996d980ad8de
|b 13
|u dkfz
700 1 _ |a Fröhling, Stefan
|0 P:(DE-He78)f0144d171d26dbedb67c9db1df35629d
|b 14
|u dkfz
700 1 _ |a Brinker, Titus J
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Collaborators
|b 16
|e Collaboration Author
700 1 _ |a Schmitt, Laurenz
|b 17
700 1 _ |a Peitsch, Wiebke K
|b 18
700 1 _ |a Hoffmann, Friederike
|b 19
700 1 _ |a Becker, Jürgen C
|b 20
700 1 _ |a Drusio, Christina
|b 21
700 1 _ |a Jansen, Philipp
|b 22
700 1 _ |a Klode, Joachim
|b 23
700 1 _ |a Lodde, Georg
|b 24
700 1 _ |a Sammet, Stefanie
|b 25
700 1 _ |a Schadendorf, Dirk
|b 26
700 1 _ |a Sondermann, Wiebke
|b 27
700 1 _ |a Ugurel, Selma
|b 28
700 1 _ |a Zader, Jeannine
|b 29
700 1 _ |a Enk, Alexander
|b 30
700 1 _ |a Salzmann, Martin
|b 31
700 1 _ |a Schäfer, Sarah
|b 32
700 1 _ |a Schäkel, Knut
|b 33
700 1 _ |a Winkler, Julia
|b 34
700 1 _ |a Wölbing, Priscilla
|b 35
700 1 _ |a Asper, Hiba
|b 36
700 1 _ |a Bohne, Ann-Sophie
|b 37
700 1 _ |a Brown, Victoria
|b 38
700 1 _ |a Burba, Bianca
|b 39
700 1 _ |a Deffaa, Sophia
|b 40
700 1 _ |a Dietrich, Cecilia
|b 41
700 1 _ |a Dietrich, Matthias
|b 42
700 1 _ |a Drerup, Katharina Antonia
|b 43
700 1 _ |a Egberts, Friederike
|b 44
700 1 _ |a Erkens, Anna-Sophie
|b 45
700 1 _ |a Greven, Salim
|b 46
700 1 _ |a Harde, Viola
|b 47
700 1 _ |a Jost, Marion
|b 48
700 1 _ |a Kaeding, Merit
|b 49
700 1 _ |a Kosova, Katharina
|b 50
700 1 _ |a Lischner, Stephan
|b 51
700 1 _ |a Maagk, Maria
|b 52
700 1 _ |a Messinger, Anna Laetitia
|b 53
700 1 _ |a Metzner, Malte
|b 54
700 1 _ |a Motamedi, Rogina
|b 55
700 1 _ |a Rosenthal, Ann-Christine
|b 56
700 1 _ |a Seidl, Ulrich
|b 57
700 1 _ |a Stemmermann, Jana
|b 58
700 1 _ |a Torz, Kaspar
|b 59
700 1 _ |a Velez, Juliana Giraldo
|b 60
700 1 _ |a Haiduk, Jennifer
|b 61
700 1 _ |a Alter, Mareike
|b 62
700 1 _ |a Bär, Claudia
|b 63
700 1 _ |a Bergenthal, Paul
|b 64
700 1 _ |a Gerlach, Anne
|b 65
700 1 _ |a Holtorf, Christian
|b 66
700 1 _ |a Karoglan, Ante
|b 67
700 1 _ |a Kindermann, Sophie
|b 68
700 1 _ |a Kraas, Luise
|b 69
700 1 _ |a Felcht, Moritz
|b 70
700 1 _ |a Gaiser, Maria R
|b 71
700 1 _ |a Klemke, Claus-Detlev
|b 72
700 1 _ |a Kurzen, Hjalmar
|b 73
700 1 _ |a Leibing, Thomas
|b 74
700 1 _ |a Müller, Verena
|b 75
700 1 _ |a Reinhard, Raphael R
|b 76
700 1 _ |a Utikal, Jochen
|0 P:(DE-He78)a229f7724466e7efadf4a1ace1ff8af3
|b 77
|u dkfz
700 1 _ |a Winter, Franziska
|b 78
700 1 _ |a Berking, Carola
|b 79
700 1 _ |a Eicher, Laurie
|b 80
700 1 _ |a Hartmann, Daniela
|b 81
700 1 _ |a Heppt, Markus
|b 82
700 1 _ |a Kilian, Katharina
|b 83
700 1 _ |a Krammer, Sebastian
|b 84
700 1 _ |a Lill, Diana
|b 85
700 1 _ |a Niesert, Anne-Charlotte
|b 86
700 1 _ |a Oppel, Eva
|b 87
700 1 _ |a Sattler, Elke
|b 88
700 1 _ |a Senner, Sonja
|b 89
700 1 _ |a Wallmichrath, Jens
|b 90
700 1 _ |a Wolff, Hans
|b 91
700 1 _ |a Gesierich, Anja
|b 92
700 1 _ |a Giner, Tina
|b 93
700 1 _ |a Glutsch, Valerie
|b 94
700 1 _ |a Kerstan, Andreas
|b 95
700 1 _ |a Presser, Dagmar
|b 96
700 1 _ |a Schrüfer, Philipp
|b 97
700 1 _ |a Schummer, Patrick
|b 98
700 1 _ |a Stolze, Ina
|b 99
700 1 _ |a Weber, Judith
|b 100
700 1 _ |a Drexler, Konstantin
|b 101
700 1 _ |a Haferkamp, Sebastian
|b 102
700 1 _ |a Mickler, Marion
|b 103
700 1 _ |a Stauner, Camila Toledo
|b 104
700 1 _ |a Thiem, Alexander
|b 105
773 _ _ |a 10.1016/j.ejca.2019.07.019
|g Vol. 120, p. 114 - 121
|0 PERI:(DE-600)1468190-0
|p 114 - 121
|t European journal of cancer
|v 120
|y 2019
|x 0959-8049
909 C O |o oai:inrepo02.dkfz.de:144770
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)a229f7724466e7efadf4a1ace1ff8af3
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 P:(DE-He78)457c042884c901eb0a02c18bb1d30103
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 13
|6 P:(DE-He78)5bacb661d5d7c0220d8f996d980ad8de
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 14
|6 P:(DE-He78)f0144d171d26dbedb67c9db1df35629d
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 15
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 77
|6 P:(DE-He78)a229f7724466e7efadf4a1ace1ff8af3
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-311
|2 G:(DE-HGF)POF3-300
|v Signalling pathways, cell and tumor biology
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2019
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EUR J CANCER : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b EUR J CANCER : 2017
920 1 _ |0 I:(DE-He78)A370-20160331
|k A370
|l KKE Dermatoonkologie
|x 0
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l Biostatistik
|x 1
920 1 _ |0 I:(DE-He78)B340-20160331
|k B340
|l Translationale Medizinische Onkologie
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)A370-20160331
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a I:(DE-He78)B340-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21