Journal Article DKFZ-2019-02202

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Superior skin cancer classification by the combination of human and artificial intelligence.

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2019
Elsevier Amsterdam [u.a.]

European journal of cancer 120, 114 - 121 () [10.1016/j.ejca.2019.07.019]
 GO

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: In recent studies, convolutional neural networks (CNNs) outperformed dermatologists in distinguishing dermoscopic images of melanoma and nevi. In these studies, dermatologists and artificial intelligence were considered as opponents. However, the combination of classifiers frequently yields superior results, both in machine learning and among humans. In this study, we investigated the potential benefit of combining human and artificial intelligence for skin cancer classification.Using 11,444 dermoscopic images, which were divided into five diagnostic categories, novel deep learning techniques were used to train a single CNN. Then, both 112 dermatologists of 13 German university hospitals and the trained CNN independently classified a set of 300 biopsy-verified skin lesions into those five classes. Taking into account the certainty of the decisions, the two independently determined diagnoses were combined to a new classifier with the help of a gradient boosting method. The primary end-point of the study was the correct classification of the images into five designated categories, whereas the secondary end-point was the correct classification of lesions as either benign or malignant (binary classification).Regarding the multiclass task, the combination of man and machine achieved an accuracy of 82.95%. This was 1.36% higher than the best of the two individual classifiers (81.59% achieved by the CNN). Owing to the class imbalance in the binary problem, sensitivity, but not accuracy, was examined and demonstrated to be superior (89%) to the best individual classifier (CNN with 86.1%). The specificity in the combined classifier decreased from 89.2% to 84%. However, at an equal sensitivity of 89%, the CNN achieved a specificity of only 81.5% INTERPRETATION: Our findings indicate that the combination of human and artificial intelligence achieves superior results over the independent results of both of these systems.

Classification:

Contributing Institute(s):
  1. KKE Dermatoonkologie (A370)
  2. Biostatistik (C060)
  3. Translationale Medizinische Onkologie (B340)
Research Program(s):
  1. 311 - Signalling pathways, cell and tumor biology (POF3-311) (POF3-311)

Appears in the scientific report 2019
Database coverage:
Medline ; BIOSIS Previews ; Clarivate Analytics Master Journal List ; Current Contents - Clinical Medicine ; Current Contents - Life Sciences ; Ebsco Academic Search ; IF >= 5 ; JCR ; NCBI Molecular Biology Database ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Public records
Publications database

 Record created 2019-09-16, last modified 2024-02-29



Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)