001     147192
005     20240229112642.0
024 7 _ |2 doi
|a 10.2967/jnumed.118.224469
024 7 _ |2 pmid
|a pmid:30850501
024 7 _ |2 pmc
|a pmc:PMC6785792
024 7 _ |2 ISSN
|a 0022-3123
024 7 _ |2 ISSN
|a 0097-9058
024 7 _ |2 ISSN
|a 0161-5505
024 7 _ |2 ISSN
|a 1535-5667
024 7 _ |2 ISSN
|a 2159-662X
024 7 _ |a altmetric:70354575
|2 altmetric
037 _ _ |a DKFZ-2019-02328
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |0 P:(DE-He78)b92647c18492ca0d83530e3e93821495
|a Loktev, Anastasia
|b 0
|e First author
245 _ _ |a Development of Fibroblast Activation Protein-Targeted Radiotracers with Improved Tumor Retention.
260 _ _ |a New York, NY
|b Soc.
|c 2019
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1572003795_13167
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a Cancer-associated fibroblasts constitute a vital subpopulation of the tumor stroma and are present in more than 90% of epithelial carcinomas. The overexpression of the serine protease fibroblast activation protein (FAP) allows a selective targeting of a variety of tumors by inhibitor-based radiopharmaceuticals (FAPIs). Of these compounds, FAPI-04 has been recently introduced as a theranostic radiotracer and demonstrated high uptake into different FAP-positive tumors in cancer patients. To enable the delivery of higher doses, thereby improving the outcome of a therapeutic application, several FAPI variants were designed to further increase tumor uptake and retention of these tracers. Methods: Novel quinoline-based radiotracers were synthesized by organic chemistry and evaluated in radioligand binding assays using FAP-expressing HT-1080 cells. Depending on their in vitro performance, small-animal PET imaging and biodistribution studies were performed on HT-1080-FAP tumor-bearing mice. The most promising compounds were used for clinical PET imaging in 8 cancer patients. Results: Compared with FAPI-04, 11 of 15 FAPI derivatives showed improved FAP binding in vitro. Of these, 7 compounds demonstrated increased tumor uptake in tumor-bearing mice. Moreover, tumor-to-normal-organ ratios were improved for most of the compounds, resulting in images with higher contrast. Notably two of the radiotracers, FAPI-21 and -46, displayed substantially improved ratios of tumor to blood, liver, muscle, and intestinal uptake. A first diagnostic application in cancer patients revealed high intratumoral uptake of both radiotracers already 10 min after administration but a higher uptake in oral mucosa, salivary glands, and thyroid for FAPI-21. Conclusion: Chemical modification of the FAPI framework enabled enhanced FAP binding and improved pharmacokinetics in most of the derivatives, resulting in high-contrast images. Moreover, higher doses of radioactivity can be delivered while minimizing damage to healthy tissue, which may improve therapeutic outcome.
536 _ _ |0 G:(DE-HGF)POF3-315
|a 315 - Imaging and radiooncology (POF3-315)
|c POF3-315
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Lindner, Thomas
|b 1
700 1 _ |a Burger, Eva-Maria
|b 2
700 1 _ |0 P:(DE-He78)5f322a4feb2548d8312f781f80718b3c
|a Altmann, Annette
|b 3
|u dkfz
700 1 _ |a Giesel, Frederik
|b 4
700 1 _ |a Kratochwil, Clemens
|b 5
700 1 _ |0 P:(DE-He78)8714da4e45acfa36ce87c291443a9218
|a Debus, Jürgen
|b 6
|u dkfz
700 1 _ |a Marmé, Frederik
|b 7
700 1 _ |a Jäger, Dirk
|b 8
700 1 _ |a Mier, Walter
|b 9
700 1 _ |0 P:(DE-He78)13a0afba029f5f64dc18b25ef7499558
|a Haberkorn, Uwe
|b 10
|e Last author
|u dkfz
773 _ _ |0 PERI:(DE-600)2040222-3
|a 10.2967/jnumed.118.224469
|g Vol. 60, no. 10, p. 1421 - 1429
|n 10
|p 1421 - 1429
|t Journal of nuclear medicine
|v 60
|x 2159-662X
|y 2019
909 C O |o oai:inrepo02.dkfz.de:147192
|p VDB
910 1 _ |0 I:(DE-588b)2036810-0
|6 P:(DE-He78)5f322a4feb2548d8312f781f80718b3c
|a Deutsches Krebsforschungszentrum
|b 3
|k DKFZ
910 1 _ |0 I:(DE-588b)2036810-0
|6 P:(DE-He78)8714da4e45acfa36ce87c291443a9218
|a Deutsches Krebsforschungszentrum
|b 6
|k DKFZ
910 1 _ |0 I:(DE-588b)2036810-0
|6 P:(DE-He78)13a0afba029f5f64dc18b25ef7499558
|a Deutsches Krebsforschungszentrum
|b 10
|k DKFZ
913 1 _ |0 G:(DE-HGF)POF3-315
|1 G:(DE-HGF)POF3-310
|2 G:(DE-HGF)POF3-300
|a DE-HGF
|l Krebsforschung
|v Imaging and radiooncology
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2019
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b J NUCL MED : 2017
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0320
|2 StatID
|a DBCoverage
|b PubMed Central
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)1110
|2 StatID
|a DBCoverage
|b Current Contents - Clinical Medicine
915 _ _ |0 StatID:(DE-HGF)1030
|2 StatID
|a DBCoverage
|b Current Contents - Life Sciences
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
915 _ _ |0 StatID:(DE-HGF)9905
|2 StatID
|a IF >= 5
|b J NUCL MED : 2017
920 1 _ |0 I:(DE-He78)E060-20160331
|k E060
|l KKE Nuklearmedizin
|x 0
920 1 _ |0 I:(DE-He78)E050-20160331
|k E050
|l KKE Strahlentherapie
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E060-20160331
980 _ _ |a I:(DE-He78)E050-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21