Journal Article DKFZ-2019-02328

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Development of Fibroblast Activation Protein-Targeted Radiotracers with Improved Tumor Retention.

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2019
Soc. New York, NY

Journal of nuclear medicine 60(10), 1421 - 1429 () [10.2967/jnumed.118.224469]
 GO

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Cancer-associated fibroblasts constitute a vital subpopulation of the tumor stroma and are present in more than 90% of epithelial carcinomas. The overexpression of the serine protease fibroblast activation protein (FAP) allows a selective targeting of a variety of tumors by inhibitor-based radiopharmaceuticals (FAPIs). Of these compounds, FAPI-04 has been recently introduced as a theranostic radiotracer and demonstrated high uptake into different FAP-positive tumors in cancer patients. To enable the delivery of higher doses, thereby improving the outcome of a therapeutic application, several FAPI variants were designed to further increase tumor uptake and retention of these tracers. Methods: Novel quinoline-based radiotracers were synthesized by organic chemistry and evaluated in radioligand binding assays using FAP-expressing HT-1080 cells. Depending on their in vitro performance, small-animal PET imaging and biodistribution studies were performed on HT-1080-FAP tumor-bearing mice. The most promising compounds were used for clinical PET imaging in 8 cancer patients. Results: Compared with FAPI-04, 11 of 15 FAPI derivatives showed improved FAP binding in vitro. Of these, 7 compounds demonstrated increased tumor uptake in tumor-bearing mice. Moreover, tumor-to-normal-organ ratios were improved for most of the compounds, resulting in images with higher contrast. Notably two of the radiotracers, FAPI-21 and -46, displayed substantially improved ratios of tumor to blood, liver, muscle, and intestinal uptake. A first diagnostic application in cancer patients revealed high intratumoral uptake of both radiotracers already 10 min after administration but a higher uptake in oral mucosa, salivary glands, and thyroid for FAPI-21. Conclusion: Chemical modification of the FAPI framework enabled enhanced FAP binding and improved pharmacokinetics in most of the derivatives, resulting in high-contrast images. Moreover, higher doses of radioactivity can be delivered while minimizing damage to healthy tissue, which may improve therapeutic outcome.

Classification:

Contributing Institute(s):
  1. KKE Nuklearmedizin (E060)
  2. KKE Strahlentherapie (E050)
Research Program(s):
  1. 315 - Imaging and radiooncology (POF3-315) (POF3-315)

Appears in the scientific report 2019
Database coverage:
Medline ; BIOSIS Previews ; Clarivate Analytics Master Journal List ; Current Contents - Clinical Medicine ; Current Contents - Life Sciences ; IF >= 5 ; JCR ; NCBI Molecular Biology Database ; PubMed Central ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Public records
Publications database

 Record created 2019-10-25, last modified 2024-02-29


Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)