001     148284
005     20240229123030.0
024 7 _ |a 10.1007/s00401-019-02102-z
|2 doi
024 7 _ |a pmid:31781912
|2 pmid
024 7 _ |a 0001-6322
|2 ISSN
024 7 _ |a 1432-0533
|2 ISSN
024 7 _ |a altmetric:71354401
|2 altmetric
037 _ _ |a DKFZ-2019-02850
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Korshunov, Andrey
|0 P:(DE-He78)8d9c904a6cea14d4c99c78ba46e41f93
|b 0
|e First author
|u dkfz
245 _ _ |a Transcriptional profiling of medulloblastoma with extensive nodularity (MBEN) reveals two clinically relevant tumor subsets with VSNL1 as potent prognostic marker.
260 _ _ |a Heidelberg
|c 2020
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1601365925_28271
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2020 Mar;139(3):583-596.#EA:B300#LA:B300#
520 _ _ |a Medulloblastoma with extensive nodularity (MBEN) is one of the few central nervous system (CNS) tumor entities occurring in infants which is traditionally associated with good to excellent prognosis. Some MBEN, however, have been reported with an unfavorable clinical course. We performed an integrated DNA/RNA-based molecular analysis of a multi-institutional MBEN cohort (n = 41) to identify molecular events which might be responsible for variability in patients' clinical outcomes. RNA sequencing analysis of this MBEN cohort disclosed two clear transcriptome clusters (TCL) of these CNS tumors: 'TCL1 MBEN' and 'TCL2 MBEN' which were associated with various gene expression signatures, mutational landscapes and, importantly, prognosis. Thus, the clinically unfavorable 'TCL1 MBEN' subset revealed transcriptome signatures composed of cancer-associated signaling pathways and disclosed a high frequency of clinically relevant germline PTCH1/SUFU alterations. In contrast, gene expression profiles of tumors from the clinically favorable 'TCL2 MBEN' subgroup were associated with activation of various neurometabolic and neurotransmission signaling pathways, and germline SHH-pathway gene mutations were extremely rare in this transcriptome cluster. 'TCL2 MBEN' also revealed strong and ubiquitous expression of VSNL1 (visinin-like protein 1) both at the mRNA and protein level, which was correlated with a favorable clinical course. Thus, combining mutational and epigenetic profiling with transcriptome analysis including VSNL1 immunohistochemistry, MBEN patients could be stratified into clinical risk groups of potential value for subsequent treatment planning.
536 _ _ |a 312 - Functional and structural genomics (POF3-312)
|0 G:(DE-HGF)POF3-312
|c POF3-312
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Okonechnikov, Konstantin
|0 P:(DE-He78)34b3639de467b2c700920d7cbc3d2110
|b 1
|u dkfz
700 1 _ |a Sahm, Felix
|0 P:(DE-He78)a1f4b408b9155beb2a8f7cba4d04fe88
|b 2
|u dkfz
700 1 _ |a Ryzhova, Marina
|b 3
700 1 _ |a Stichel, Damian
|0 P:(DE-He78)d20d08adc992abdb6ccffa1686f1ba17
|b 4
|u dkfz
700 1 _ |a Schrimpf, Daniel
|0 P:(DE-He78)e54a1e0999c1d8c95869ef9188b794cc
|b 5
|u dkfz
700 1 _ |a Ghasemi, David R
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Pajtler, Kristian W
|0 P:(DE-He78)a7c1bbac024fa232d9c6b78443328d9d
|b 7
|u dkfz
700 1 _ |a Antonelli, Manila
|b 8
700 1 _ |a Donofrio, Vittoria
|b 9
700 1 _ |a Mastronuzzi, Angela
|b 10
700 1 _ |a Rossi, Sabrina
|b 11
700 1 _ |a Camassei, Francesca Diomedi
|b 12
700 1 _ |a Buccoliero, Anna Maria
|b 13
700 1 _ |a Haberler, Christine
|b 14
700 1 _ |a Slavc, Irene
|b 15
700 1 _ |a Dahiya, Sonika
|b 16
700 1 _ |a Casalini, Belen
|0 P:(DE-He78)1e5010244cbd57412baa2f0e2806a182
|b 17
|u dkfz
700 1 _ |a Sievers, Philipp
|0 P:(DE-He78)8aad075b17d93a5636a34942bdbd7ee6
|b 18
|u dkfz
700 1 _ |a Meyer, Jochen
|0 P:(DE-He78)b6273c0ba3ae37a4d3d1c6b084797f2e
|b 19
|u dkfz
700 1 _ |a Kumirova, Ella
|b 20
700 1 _ |a Zheludkova, Olga
|b 21
700 1 _ |a Golanov, Andrey
|b 22
700 1 _ |a Jones, David T W
|0 P:(DE-He78)551bb92841f634070997aa168d818492
|b 23
|u dkfz
700 1 _ |a Pfister, Stefan M
|0 P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9
|b 24
|u dkfz
700 1 _ |a Kool, Marcel
|0 P:(DE-He78)4c28e2aade5f44d8eca9dd8e97638ec8
|b 25
|u dkfz
700 1 _ |a von Deimling, Andreas
|0 P:(DE-He78)a8a10626a848d31e70cfd96a133cc144
|b 26
|e Last author
|u dkfz
773 _ _ |a 10.1007/s00401-019-02102-z
|0 PERI:(DE-600)1458410-4
|n 3
|p 583-596
|t Acta neuropathologica
|v 139
|y 2020
|x 1432-0533
909 C O |p VDB
|o oai:inrepo02.dkfz.de:148284
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)8d9c904a6cea14d4c99c78ba46e41f93
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)34b3639de467b2c700920d7cbc3d2110
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)a1f4b408b9155beb2a8f7cba4d04fe88
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)d20d08adc992abdb6ccffa1686f1ba17
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)e54a1e0999c1d8c95869ef9188b794cc
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)a7c1bbac024fa232d9c6b78443328d9d
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 17
|6 P:(DE-He78)1e5010244cbd57412baa2f0e2806a182
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 18
|6 P:(DE-He78)8aad075b17d93a5636a34942bdbd7ee6
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 19
|6 P:(DE-He78)b6273c0ba3ae37a4d3d1c6b084797f2e
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 23
|6 P:(DE-He78)551bb92841f634070997aa168d818492
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 24
|6 P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 25
|6 P:(DE-He78)4c28e2aade5f44d8eca9dd8e97638ec8
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 26
|6 P:(DE-He78)a8a10626a848d31e70cfd96a133cc144
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-312
|2 G:(DE-HGF)POF3-300
|v Functional and structural genomics
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2020
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACTA NEUROPATHOL : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b ACTA NEUROPATHOL : 2017
920 2 _ |0 I:(DE-He78)B300-20160331
|k B300
|l KKE Neuropathologie
|x 0
920 0 _ |0 I:(DE-He78)B300-20160331
|k B300
|l KKE Neuropathologie
|x 0
920 1 _ |0 I:(DE-He78)B300-20160331
|k B300
|l KKE Neuropathologie
|x 0
920 1 _ |0 I:(DE-He78)B062-20160331
|k B062
|l B062 Pädiatrische Neuroonkologie
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B300-20160331
980 _ _ |a I:(DE-He78)B062-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21