Home > Publications database > Precursors for Nonlymphoid-Tissue Treg Cells Reside in Secondary Lymphoid Organs and Are Programmed by the Transcription Factor BATF. > print |
001 | 153096 | ||
005 | 20240229123039.0 | ||
024 | 7 | _ | |a 10.1016/j.immuni.2019.12.002 |2 doi |
024 | 7 | _ | |a pmid:31924477 |2 pmid |
024 | 7 | _ | |a 1074-7613 |2 ISSN |
024 | 7 | _ | |a 1097-4180 |2 ISSN |
024 | 7 | _ | |a altmetric:73794347 |2 altmetric |
037 | _ | _ | |a DKFZ-2020-00178 |
041 | _ | _ | |a eng |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Delacher, Michael |0 P:(DE-He78)a4340add02b610f9dbdba2dc909cbd09 |b 0 |e First author |
245 | _ | _ | |a Precursors for Nonlymphoid-Tissue Treg Cells Reside in Secondary Lymphoid Organs and Are Programmed by the Transcription Factor BATF. |
260 | _ | _ | |a New York, NY |c 2020 |b Elsevier |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1639037740_22606 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a 2020 Feb 18;52(2):295-312.e11#EA:D100#EA:B330#LA:D100# |
520 | _ | _ | |a Specialized regulatory T (Treg) cells accumulate and perform homeostatic and regenerative functions in nonlymphoid tissues. Whether common precursors for nonlymphoid-tissue Treg cells exist and how they differentiate remain elusive. Using transcription factor nuclear factor, interleukin 3 regulated (Nfil3) reporter mice and single-cell RNA-sequencing (scRNA-seq), we identified two precursor stages of interleukin 33 (IL-33) receptor ST2-expressing nonlymphoid tissue Treg cells, which resided in the spleen and lymph nodes. Global chromatin profiling of nonlymphoid tissue Treg cells and the two precursor stages revealed a stepwise acquisition of chromatin accessibility and reprogramming toward the nonlymphoid-tissue Treg cell phenotype. Mechanistically, we identified and validated the transcription factor Batf as the driver of the molecular tissue program in the precursors. Understanding this tissue development program will help to harness regenerative properties of tissue Treg cells for therapy. |
536 | _ | _ | |a 314 - Tumor immunology (POF3-314) |0 G:(DE-HGF)POF3-314 |c POF3-314 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, |
700 | 1 | _ | |a Imbusch, Charles D |0 P:(DE-HGF)0 |b 1 |e First author |
700 | 1 | _ | |a Hotz-Wagenblatt, Agnes |0 P:(DE-He78)2f34b89d62d5e5c651aa1e683844b092 |b 2 |
700 | 1 | _ | |a Mallm, Jan-Philipp |0 P:(DE-He78)697cb039ca08f3b7e5a2a52dbf020b46 |b 3 |
700 | 1 | _ | |a Bauer, Katharina |0 P:(DE-He78)5b10e57ed1df98e2fd31edbdeed985ba |b 4 |
700 | 1 | _ | |a Simon, Malte |0 P:(DE-He78)de4915d76b207d077967848783f8d2ba |b 5 |
700 | 1 | _ | |a Riegel, Dania |b 6 |
700 | 1 | _ | |a Rendeiro, André F |b 7 |
700 | 1 | _ | |a Bittner, Sebastian |b 8 |
700 | 1 | _ | |a Sanderink, Lieke |b 9 |
700 | 1 | _ | |a Pant, Asmita |b 10 |
700 | 1 | _ | |a Schmidleithner, Lisa |b 11 |
700 | 1 | _ | |a Braband, Kathrin |0 P:(DE-He78)48a0f3d6278cc8d51ce937ca7db9dba8 |b 12 |
700 | 1 | _ | |a Echtenachter, Bernd |b 13 |
700 | 1 | _ | |a Fischer, Alexander |b 14 |
700 | 1 | _ | |a Giunchiglia, Valentina |0 P:(DE-He78)ff7fd4eeff966cbac2c2fa199a58e64f |b 15 |
700 | 1 | _ | |a Hoffmann, Petra |b 16 |
700 | 1 | _ | |a Edinger, Matthias |b 17 |
700 | 1 | _ | |a Bock, Christoph |b 18 |
700 | 1 | _ | |a Rehli, Michael |b 19 |
700 | 1 | _ | |a Brors, Benedikt |0 P:(DE-He78)fc949170377b58098e46141d95c72661 |b 20 |
700 | 1 | _ | |a Schmidl, Christian |b 21 |
700 | 1 | _ | |a Feuerer, Markus |0 P:(DE-He78)f0638edf1d3f61c0d7ebb587f511733f |b 22 |e Last author |
773 | _ | _ | |a 10.1016/j.immuni.2019.12.002 |g p. S1074761319304984 |0 PERI:(DE-600)2001966-X |n 2 |p 295-312.e11 |t Immunity |v 52 |y 2020 |x 1074-7613 |
909 | C | O | |p VDB |o oai:inrepo02.dkfz.de:153096 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 0 |6 P:(DE-He78)a4340add02b610f9dbdba2dc909cbd09 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 1 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 2 |6 P:(DE-He78)2f34b89d62d5e5c651aa1e683844b092 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 3 |6 P:(DE-He78)697cb039ca08f3b7e5a2a52dbf020b46 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 4 |6 P:(DE-He78)5b10e57ed1df98e2fd31edbdeed985ba |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 5 |6 P:(DE-He78)de4915d76b207d077967848783f8d2ba |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 12 |6 P:(DE-He78)48a0f3d6278cc8d51ce937ca7db9dba8 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 20 |6 P:(DE-He78)fc949170377b58098e46141d95c72661 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 22 |6 P:(DE-He78)f0638edf1d3f61c0d7ebb587f511733f |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF3-310 |0 G:(DE-HGF)POF3-314 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-300 |4 G:(DE-HGF)POF |v Tumor immunology |x 0 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b IMMUNITY : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
915 | _ | _ | |a IF >= 15 |0 StatID:(DE-HGF)9915 |2 StatID |b IMMUNITY : 2017 |
920 | 2 | _ | |0 I:(DE-He78)D100-20160331 |k D100 |l Immuntoleranz |x 0 |
920 | 1 | _ | |0 I:(DE-He78)D100-20160331 |k D100 |l Immuntoleranz |x 0 |
920 | 1 | _ | |0 I:(DE-He78)B330-20160331 |k B330 |l Angewandte Bioinformatik |x 1 |
920 | 1 | _ | |0 I:(DE-He78)W610-20160331 |k W610 |l W610 Omics IT and Data Management |x 2 |
920 | 1 | _ | |0 I:(DE-He78)W192-20160331 |k W192 |l W192 scOpen Lab |x 3 |
920 | 1 | _ | |0 I:(DE-He78)B066-20160331 |k B066 |l B066 Chromatin-Netzwerke |x 4 |
920 | 1 | _ | |0 I:(DE-He78)HD01-20160331 |k HD01 |l DKTK HD zentral |x 5 |
920 | 0 | _ | |0 I:(DE-He78)D100-20160331 |k D100 |l Immuntoleranz |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)D100-20160331 |
980 | _ | _ | |a I:(DE-He78)B330-20160331 |
980 | _ | _ | |a I:(DE-He78)W610-20160331 |
980 | _ | _ | |a I:(DE-He78)W192-20160331 |
980 | _ | _ | |a I:(DE-He78)B066-20160331 |
980 | _ | _ | |a I:(DE-He78)HD01-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|