000153798 001__ 153798
000153798 005__ 20240229123050.0
000153798 0247_ $$2doi$$a10.1088/1361-6560/ab7973
000153798 0247_ $$2pmid$$apmid:32092707
000153798 0247_ $$2ISSN$$a0031-9155
000153798 0247_ $$2ISSN$$a1361-6560
000153798 037__ $$aDKFZ-2020-00464
000153798 041__ $$aeng
000153798 082__ $$a530
000153798 1001_ $$0P:(DE-He78)ca98a31afd9fff038336ecfcf56f268c$$aDal Bello, Riccardo$$b0$$eFirst author$$udkfz
000153798 245__ $$aPrompt gamma spectroscopy for absolute range verification of 12C ions at synchrotron based facilities.
000153798 260__ $$aBristol$$bIOP Publ.$$c2020
000153798 3367_ $$2DRIVER$$aarticle
000153798 3367_ $$2DataCite$$aOutput Types/Journal article
000153798 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1601036045_17569
000153798 3367_ $$2BibTeX$$aARTICLE
000153798 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000153798 3367_ $$00$$2EndNote$$aJournal Article
000153798 500__ $$a2020 May 11;65(9):095010#EA:E041#LA:E041#
000153798 520__ $$aThe physical range uncertainty limits the exploitation of the full potential of charged particle therapy. In this work we face this issue aiming to measure the absolute Bragg peak position in the target. We investigate p,4He,12C and16O beams accelerated at the Heidelberg Ion-Beam Therapy Center. The residual range of the primary12C ions is measured using the prompt gamma spectroscopy method, which was demonstrated for proton beams accelerated by cyclotrons and is developed here for the first time for heavier ions accelerated by a synchrotron. We develop a detector system that includes (i) a spectroscopic unit based on cerium(III) bromide and bismuth germanium oxide scintillating crystals, (ii) a beam trigger based on an array of scintillating fibers and (iii) a data acquisition system based on a FlashADC. We test the system in two different scenarios. In the first series of experiments we detect and identify 19 independent spectral lines over a wide gamma energy spectrum in presence of the four ion species for different targets, including also a water target with a titanium insert. In the second series of experiments we introduce a collimator aiming to relate the spectral information to the range of the primary particles. We perform extensive measurements for a12C beam and demonstrate submillimetric precision for the measurement of its Bragg peak position in the experimental setup. The features of the energy and time spectra for gamma radiation induced by p,4He and16O are investigated upstream and downstream the Bragg peak position. We conclude the analysis extrapolating the required future developments, which would be needed to achieve range verification with a 2 mm accuracy during a single fraction delivery of D = 2 Gy physical dose.
000153798 536__ $$0G:(DE-HGF)POF3-315$$a315 - Imaging and radiooncology (POF3-315)$$cPOF3-315$$fPOF III$$x0
000153798 588__ $$aDataset connected to CrossRef, PubMed,
000153798 7001_ $$0P:(DE-He78)71030cceec72df4f96fb0ec3eef072f3$$aMagalhaes Martins, Paulo Jorge$$b1$$udkfz
000153798 7001_ $$aBrons, Stephan$$b2
000153798 7001_ $$aHermann, German$$b3
000153798 7001_ $$aKihm, Thomas$$b4
000153798 7001_ $$aSeimetz, Michael$$b5
000153798 7001_ $$0P:(DE-He78)102624aca75cfe987c05343d5fdcf2fe$$aSeco, Joao$$b6$$eLast author$$udkfz
000153798 773__ $$0PERI:(DE-600)1473501-5$$a10.1088/1361-6560/ab7973$$n9$$p095010$$tPhysics in medicine and biology$$v65$$x1361-6560$$y2020
000153798 909CO $$ooai:inrepo02.dkfz.de:153798$$pVDB
000153798 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)ca98a31afd9fff038336ecfcf56f268c$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000153798 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)71030cceec72df4f96fb0ec3eef072f3$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000153798 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)102624aca75cfe987c05343d5fdcf2fe$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000153798 9131_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0
000153798 9141_ $$y2020
000153798 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000153798 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000153798 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS MED BIOL : 2017
000153798 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000153798 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000153798 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000153798 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000153798 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000153798 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000153798 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000153798 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000153798 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000153798 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000153798 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000153798 9202_ $$0I:(DE-He78)E041-20160331$$kE041$$lE041 Medizinische Physik in der Radioonkologie$$x0
000153798 9200_ $$0I:(DE-He78)E041-20160331$$kE041$$lE041 Medizinische Physik in der Radioonkologie$$x0
000153798 9201_ $$0I:(DE-He78)E041-20160331$$kE041$$lE041 Medizinische Physik in der Radioonkologie$$x0
000153798 980__ $$ajournal
000153798 980__ $$aVDB
000153798 980__ $$aI:(DE-He78)E041-20160331
000153798 980__ $$aUNRESTRICTED