000154398 001__ 154398
000154398 005__ 20240229123100.0
000154398 0247_ $$2doi$$a10.1088/1361-6560/ab8578
000154398 0247_ $$2pmid$$apmid:32235075
000154398 0247_ $$2ISSN$$a0031-9155
000154398 0247_ $$2ISSN$$a1361-6560
000154398 037__ $$aDKFZ-2020-00738
000154398 041__ $$aeng
000154398 082__ $$a530
000154398 1001_ $$0P:(DE-He78)d26409e0d07007daf771142a945102ef$$aMann, Philipp$$b0$$eFirst author$$udkfz
000154398 245__ $$aFeasibility of markerless fluoroscopic real-time tumor detection for adaptive radiotherapy: development and end-to-end testing.
000154398 260__ $$aBristol$$bIOP Publ.$$c2020
000154398 3367_ $$2DRIVER$$aarticle
000154398 3367_ $$2DataCite$$aOutput Types/Journal article
000154398 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1600868203_6352
000154398 3367_ $$2BibTeX$$aARTICLE
000154398 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000154398 3367_ $$00$$2EndNote$$aJournal Article
000154398 500__ $$a2020 Jun 5;65(11):115002#EA:E040#LA:E040#
000154398 520__ $$aRespiratory-gated radiotherapy treatments of lung tumors reduce the irradiated normal tissue volume and potentially lower the risk of side effects. However, in clinical routine, the gating signal is usually derived from external markers or other surrogate signals and may not always correlate well with the actual tumor position. This study uses the kV-imaging system of a LINAC in combination with a multiple template matching algorithm for markerless real-time detection of the tumor position in a dynamic anthropomorphic lung phantom. The tumor was realized by a small container filled with polymer dosimetry gel, the so-called gel tumor. A full end-to-end test for a gated treatment was performed and the geometric and dosimetric accuracy was validated. The accuracy of the tumor detection algorithm in SI- direction was found to be (2.3±1.6) mm and the gel tumor was automatically detected in 98 out of 100 images. The measured 3D dose distribution showed a uniform coverage of the gel tumor and comparison with the treatment plan revealed a high 3D γ-passing rate of 86.7 % (3%/3mm). The simulated treatment confirmed the employed margin sizes for residual motion within the gating window and serves as an end-to-end test for a gated treatment based on a markerless fluoroscopic real-time tumor detection.
000154398 536__ $$0G:(DE-HGF)POF3-315$$a315 - Imaging and radiooncology (POF3-315)$$cPOF3-315$$fPOF III$$x0
000154398 588__ $$aDataset connected to CrossRef, PubMed,
000154398 7001_ $$0P:(DE-He78)65f06e1f00ffd3696106680fd0f3abde$$aWitte, Maximilian$$b1
000154398 7001_ $$0P:(DE-He78)80b16f7d6b1ea9378b96511bce5755a2$$aMercea, Paul$$b2
000154398 7001_ $$aNill, Simeon$$b3
000154398 7001_ $$0P:(DE-He78)2c5517db7bc397f9b14ae357a7ce54ff$$aLang, Clemens$$b4$$udkfz
000154398 7001_ $$0P:(DE-He78)b43076fb0a30230e4323887c0c980046$$aKarger, Christian$$b5$$eLast author$$udkfz
000154398 773__ $$0PERI:(DE-600)1473501-5$$a10.1088/1361-6560/ab8578$$n11$$p115002$$tPhysics in medicine and biology$$v65$$x1361-6560$$y2020
000154398 909CO $$ooai:inrepo02.dkfz.de:154398$$pVDB
000154398 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)d26409e0d07007daf771142a945102ef$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000154398 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)65f06e1f00ffd3696106680fd0f3abde$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000154398 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)80b16f7d6b1ea9378b96511bce5755a2$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000154398 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)2c5517db7bc397f9b14ae357a7ce54ff$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000154398 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)b43076fb0a30230e4323887c0c980046$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000154398 9131_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0
000154398 9141_ $$y2020
000154398 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000154398 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000154398 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS MED BIOL : 2017
000154398 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000154398 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000154398 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000154398 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000154398 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000154398 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000154398 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000154398 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000154398 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000154398 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000154398 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000154398 9202_ $$0I:(DE-He78)E040-20160331$$kE040$$lE040 Med. Physik in der Strahlentherapie$$x0
000154398 9200_ $$0I:(DE-He78)E040-20160331$$kE040$$lE040 Med. Physik in der Strahlentherapie$$x0
000154398 9201_ $$0I:(DE-He78)E040-20160331$$kE040$$lE040 Med. Physik in der Strahlentherapie$$x0
000154398 980__ $$ajournal
000154398 980__ $$aVDB
000154398 980__ $$aI:(DE-He78)E040-20160331
000154398 980__ $$aUNRESTRICTED