001     154459
005     20240229133153.0
024 7 _ |a 10.1007/s00103-020-03108-9
|2 doi
024 7 _ |a pmid:32157352
|2 pmid
024 7 _ |a 1436-9990
|2 ISSN
024 7 _ |a 1437-1588
|2 ISSN
024 7 _ |a altmetric:77331032
|2 altmetric
037 _ _ |a DKFZ-2020-00781
041 _ _ |a ger
082 _ _ |a 610
100 1 _ |a Jaeschke, Lina
|b 0
245 _ _ |a [Assessment of self-reported cardiovascular and metabolic diseases in the German National Cohort (GNC, NAKO Gesundheitsstudie): methods and initial results].
260 _ _ |a Heidelberg
|c 2020
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1611838187_22973
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Data on self-reported cardiovascular and metabolic diseases are available for the first 100,000 participants of the population-based German National Cohort (GNC, NAKO Gesundheitsstudie).To describe assessment methods and the frequency of self-reported cardiovascular and metabolic diseases in the German National Cohort.Using a computer-based, standardized personal interview, 101,806 participants (20-75 years, 46% men) from 18 nationwide study centres were asked to use a predefined list to report medical conditions ever diagnosed by a physician, including cardiovascular or metabolic diseases. For the latter, we calculated sex-stratified relative frequencies and compared these with reference data.With regard to cardiovascular diseases, 3.5% of men and 0.8% of women reported to have ever been diagnosed with a myocardial infarction, 4.8% and 1.5% with angina pectoris, 3.5% and 2.5% with heart failure, 10.1% and 10.4% with cardiac arrhythmia, 2.7% and 1.8% with claudicatio intermittens, and 34.6% and 27.0% with arterial hypertension. The frequencies of self-reported diagnosed metabolic diseases were 8.1% and 5.8% for diabetes mellitus, 28.6% and 24.5% for hyperlipidaemia, 7.9% and 2.4% for gout, and 10.1% and 34.3% for thyroid diseases. Observed disease frequencies were lower than reference data for Germany.In the German National Cohort, self-reported cardiovascular and metabolic diseases diagnosed by a physician are assessed from all participants, therefore representing a data source for future cardio-metabolic research in this cohort.
536 _ _ |a 323 - Metabolic Dysfunction as Risk Factor (POF3-323)
|0 G:(DE-HGF)POF3-323
|c POF3-323
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Steinbrecher, Astrid
|b 1
700 1 _ |a Greiser, Karin Halina
|0 P:(DE-He78)e0ac0d57cdb66d87f2d95ae5f6178c1b
|b 2
|u dkfz
700 1 _ |a Dörr, Marcus
|b 3
700 1 _ |a Buck, Thomas
|b 4
700 1 _ |a Linseisen, Jakob
|b 5
700 1 _ |a Meisinger, Christa
|b 6
700 1 _ |a Ahrens, Wolfgang
|b 7
700 1 _ |a Becher, Heiko
|b 8
700 1 _ |a Berger, Klaus
|b 9
700 1 _ |a Braun, Bettina
|b 10
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 11
|u dkfz
700 1 _ |a Castell, Stefanie
|b 12
700 1 _ |a Fischer, Beate
|b 13
700 1 _ |a Franzke, Claus-Werner
|b 14
700 1 _ |a Gastell, Sylvia
|b 15
700 1 _ |a Günther, Kathrin
|b 16
700 1 _ |a Hoffmann, Wolfgang
|b 17
700 1 _ |a Holleczek, Bernd
|b 18
700 1 _ |a Jagodzinski, Annika
|b 19
700 1 _ |a Kaaks, Rudolf
|0 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a
|b 20
|u dkfz
700 1 _ |a Kluttig, Alexander
|b 21
700 1 _ |a Krause, Gérard
|b 22
700 1 _ |a Krist, Lilian
|b 23
700 1 _ |a Kuß, Oliver
|b 24
700 1 _ |a Lehnich, Anna-Therese
|b 25
700 1 _ |a Leitzmann, Michael
|b 26
700 1 _ |a Lieb, Wolfgang
|b 27
700 1 _ |a Löffler, Markus
|b 28
700 1 _ |a Michels, Karin B
|b 29
700 1 _ |a Mikolajczyk, Rafael
|b 30
700 1 _ |a Peters, Annette
|b 31
700 1 _ |a Schikowski, Tamara
|b 32
700 1 _ |a Schipf, Sabine
|b 33
700 1 _ |a Schmidt, Börge
|b 34
700 1 _ |a Schulze, Matthias
|b 35
700 1 _ |a Völzke, Henry
|b 36
700 1 _ |a Willich, Stefan N
|b 37
700 1 _ |a Pischon, Tobias
|b 38
773 _ _ |a 10.1007/s00103-020-03108-9
|g Vol. 63, no. 4, p. 439 - 451
|0 PERI:(DE-600)1470303-8
|n 4
|p 439 - 451
|t Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz
|v 63
|y 2020
|x 1437-1588
909 C O |p VDB
|o oai:inrepo02.dkfz.de:154459
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)e0ac0d57cdb66d87f2d95ae5f6178c1b
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 20
|6 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a
913 1 _ |a DE-HGF
|b Gesundheit
|l Herz-Kreislauf-Stoffwechselerkrankungen
|1 G:(DE-HGF)POF3-320
|0 G:(DE-HGF)POF3-323
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Metabolic Dysfunction as Risk Factor
|x 0
914 1 _ |y 2020
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BUNDESGESUNDHEITSBLA : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l C020 Epidemiologie von Krebs
|x 0
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 1
920 1 _ |0 I:(DE-He78)C120-20160331
|k C120
|l Präventive Onkologie
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a I:(DE-He78)C120-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21