Home > Publications database > [Assessment of self-reported cardiovascular and metabolic diseases in the German National Cohort (GNC, NAKO Gesundheitsstudie): methods and initial results]. > print |
001 | 154459 | ||
005 | 20240229133153.0 | ||
024 | 7 | _ | |a 10.1007/s00103-020-03108-9 |2 doi |
024 | 7 | _ | |a pmid:32157352 |2 pmid |
024 | 7 | _ | |a 1436-9990 |2 ISSN |
024 | 7 | _ | |a 1437-1588 |2 ISSN |
024 | 7 | _ | |a altmetric:77331032 |2 altmetric |
037 | _ | _ | |a DKFZ-2020-00781 |
041 | _ | _ | |a ger |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Jaeschke, Lina |b 0 |
245 | _ | _ | |a [Assessment of self-reported cardiovascular and metabolic diseases in the German National Cohort (GNC, NAKO Gesundheitsstudie): methods and initial results]. |
260 | _ | _ | |a Heidelberg |c 2020 |b Springer |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1611838187_22973 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Data on self-reported cardiovascular and metabolic diseases are available for the first 100,000 participants of the population-based German National Cohort (GNC, NAKO Gesundheitsstudie).To describe assessment methods and the frequency of self-reported cardiovascular and metabolic diseases in the German National Cohort.Using a computer-based, standardized personal interview, 101,806 participants (20-75 years, 46% men) from 18 nationwide study centres were asked to use a predefined list to report medical conditions ever diagnosed by a physician, including cardiovascular or metabolic diseases. For the latter, we calculated sex-stratified relative frequencies and compared these with reference data.With regard to cardiovascular diseases, 3.5% of men and 0.8% of women reported to have ever been diagnosed with a myocardial infarction, 4.8% and 1.5% with angina pectoris, 3.5% and 2.5% with heart failure, 10.1% and 10.4% with cardiac arrhythmia, 2.7% and 1.8% with claudicatio intermittens, and 34.6% and 27.0% with arterial hypertension. The frequencies of self-reported diagnosed metabolic diseases were 8.1% and 5.8% for diabetes mellitus, 28.6% and 24.5% for hyperlipidaemia, 7.9% and 2.4% for gout, and 10.1% and 34.3% for thyroid diseases. Observed disease frequencies were lower than reference data for Germany.In the German National Cohort, self-reported cardiovascular and metabolic diseases diagnosed by a physician are assessed from all participants, therefore representing a data source for future cardio-metabolic research in this cohort. |
536 | _ | _ | |a 323 - Metabolic Dysfunction as Risk Factor (POF3-323) |0 G:(DE-HGF)POF3-323 |c POF3-323 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, |
700 | 1 | _ | |a Steinbrecher, Astrid |b 1 |
700 | 1 | _ | |a Greiser, Karin Halina |0 P:(DE-He78)e0ac0d57cdb66d87f2d95ae5f6178c1b |b 2 |u dkfz |
700 | 1 | _ | |a Dörr, Marcus |b 3 |
700 | 1 | _ | |a Buck, Thomas |b 4 |
700 | 1 | _ | |a Linseisen, Jakob |b 5 |
700 | 1 | _ | |a Meisinger, Christa |b 6 |
700 | 1 | _ | |a Ahrens, Wolfgang |b 7 |
700 | 1 | _ | |a Becher, Heiko |b 8 |
700 | 1 | _ | |a Berger, Klaus |b 9 |
700 | 1 | _ | |a Braun, Bettina |b 10 |
700 | 1 | _ | |a Brenner, Hermann |0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2 |b 11 |u dkfz |
700 | 1 | _ | |a Castell, Stefanie |b 12 |
700 | 1 | _ | |a Fischer, Beate |b 13 |
700 | 1 | _ | |a Franzke, Claus-Werner |b 14 |
700 | 1 | _ | |a Gastell, Sylvia |b 15 |
700 | 1 | _ | |a Günther, Kathrin |b 16 |
700 | 1 | _ | |a Hoffmann, Wolfgang |b 17 |
700 | 1 | _ | |a Holleczek, Bernd |b 18 |
700 | 1 | _ | |a Jagodzinski, Annika |b 19 |
700 | 1 | _ | |a Kaaks, Rudolf |0 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a |b 20 |u dkfz |
700 | 1 | _ | |a Kluttig, Alexander |b 21 |
700 | 1 | _ | |a Krause, Gérard |b 22 |
700 | 1 | _ | |a Krist, Lilian |b 23 |
700 | 1 | _ | |a Kuß, Oliver |b 24 |
700 | 1 | _ | |a Lehnich, Anna-Therese |b 25 |
700 | 1 | _ | |a Leitzmann, Michael |b 26 |
700 | 1 | _ | |a Lieb, Wolfgang |b 27 |
700 | 1 | _ | |a Löffler, Markus |b 28 |
700 | 1 | _ | |a Michels, Karin B |b 29 |
700 | 1 | _ | |a Mikolajczyk, Rafael |b 30 |
700 | 1 | _ | |a Peters, Annette |b 31 |
700 | 1 | _ | |a Schikowski, Tamara |b 32 |
700 | 1 | _ | |a Schipf, Sabine |b 33 |
700 | 1 | _ | |a Schmidt, Börge |b 34 |
700 | 1 | _ | |a Schulze, Matthias |b 35 |
700 | 1 | _ | |a Völzke, Henry |b 36 |
700 | 1 | _ | |a Willich, Stefan N |b 37 |
700 | 1 | _ | |a Pischon, Tobias |b 38 |
773 | _ | _ | |a 10.1007/s00103-020-03108-9 |g Vol. 63, no. 4, p. 439 - 451 |0 PERI:(DE-600)1470303-8 |n 4 |p 439 - 451 |t Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz |v 63 |y 2020 |x 1437-1588 |
909 | C | O | |p VDB |o oai:inrepo02.dkfz.de:154459 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 2 |6 P:(DE-He78)e0ac0d57cdb66d87f2d95ae5f6178c1b |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 11 |6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 20 |6 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Herz-Kreislauf-Stoffwechselerkrankungen |1 G:(DE-HGF)POF3-320 |0 G:(DE-HGF)POF3-323 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-300 |4 G:(DE-HGF)POF |v Metabolic Dysfunction as Risk Factor |x 0 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b BUNDESGESUNDHEITSBLA : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
920 | 1 | _ | |0 I:(DE-He78)C020-20160331 |k C020 |l C020 Epidemiologie von Krebs |x 0 |
920 | 1 | _ | |0 I:(DE-He78)C070-20160331 |k C070 |l C070 Klinische Epidemiologie und Alternf. |x 1 |
920 | 1 | _ | |0 I:(DE-He78)C120-20160331 |k C120 |l Präventive Onkologie |x 2 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)C020-20160331 |
980 | _ | _ | |a I:(DE-He78)C070-20160331 |
980 | _ | _ | |a I:(DE-He78)C120-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|