Journal Article DKFZ-2020-01451

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Rapid and Sensitive Quantification of Osimertinib in Human Plasma Using a Fully Validated MALDI-IM-MS/MS Assay.

 ;  ;  ;  ;  ;  ;  ;

2020
MDPI Basel

Cancers 12(7), E1897 () [10.3390/cancers12071897]
 GO

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: The third-generation tyrosine kinase inhibitor (TKI), osimertinib, has revolutionized the treatment of patients with non-small cell lung carcinoma with epidermal growth factor receptor (EGFR)-activating mutation, and resistant to first- and second-generation TKIs. Osimertinib is now also proposed as a first-line therapy, thus extending the scope of applications in lung oncology. Personalized medicine approaches are still necessary to monitor if patients are exposed to adequate concentrations of osimertinib during their treatment. It would also help to understand the appearance of new resistances in patients after several months of dosing with osimertinib. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is currently the gold standard for the quantification of drugs in plasma enabling pharmacokinetic analyses and patient monitoring. In the present study, we propose an alternative to LC-MS/MS methods for the rapid and sensitive quantification of osimertinib in plasma using matrix-assisted laser desorption/ionization (MALDI) -MS. The presented assay requires only 3 min per sample for their preparation, analysis, and data extraction, and less than 3 h for quantification. A lower limit of quantification (LLOQ) of 5 ng/mL in plasma was retrieved. The method was fully validated, following the guidelines of the US Food and Drug Administration (FDA) and the European Medicines Agency (EMA) for bioanalytical method validation. The present developments prove the importance to consider alternative MS assays for time-efficient quantification of small molecule inhibitors in plasma in the context of personalized medicine for targeted therapies.

Classification:

Contributing Institute(s):
  1. DKTK HD zentral (HD01)
  2. B062 Pädiatrische Neuroonkologie (B062)
Research Program(s):
  1. 312 - Functional and structural genomics (POF3-312) (POF3-312)

Appears in the scientific report 2020
Database coverage:
Medline ; Creative Commons Attribution CC BY (No Version) ; DOAJ ; Article Processing Charges ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; DOAJ Seal ; Ebsco Academic Search ; Essential Science Indicators ; Fees ; IF >= 5 ; JCR ; NCBI Molecular Biology Database ; PubMed Central ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Public records
Publications database

 Record created 2020-07-21, last modified 2024-02-29



Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)