TY  - JOUR
AU  - Thomas, Minta
AU  - Sakoda, Lori C
AU  - Hoffmeister, Michael
AU  - Rosenthal, Elisabeth A
AU  - Lee, Jeffrey K
AU  - van Duijnhoven, Franzel J B
AU  - Platz, Elizabeth A
AU  - Wu, Anna H
AU  - Dampier, Christopher H
AU  - de la Chapelle, Albert
AU  - Wolk, Alicja
AU  - Joshi, Amit D
AU  - Burnett-Hartman, Andrea
AU  - Gsur, Andrea
AU  - Lindblom, Annika
AU  - Castells, Antoni
AU  - Win, Aung Ko
AU  - Namjou, Bahram
AU  - Van Guelpen, Bethany
AU  - Tangen, Catherine M
AU  - He, Qianchuan
AU  - Li, Christopher I
AU  - Schafmayer, Clemens
AU  - Joshu, Corinne E
AU  - Ulrich, Cornelia M
AU  - Bishop, D Timothy
AU  - Buchanan, Daniel D
AU  - Schaid, Daniel
AU  - Drew, David A
AU  - Muller, David C
AU  - Duggan, David
AU  - Crosslin, David R
AU  - Albanes, Demetrius
AU  - Giovannucci, Edward L
AU  - Larson, Eric
AU  - Qu, Flora
AU  - Mentch, Frank
AU  - Giles, Graham G
AU  - Hakonarson, Hakon
AU  - Hampel, Heather
AU  - Stanaway, Ian B
AU  - Figueiredo, Jane C
AU  - Huyghe, Jeroen R
AU  - Minnier, Jessica
AU  - Chang-Claude, Jenny
AU  - Hampe, Jochen
AU  - Harley, John B
AU  - Visvanathan, Kala
AU  - Curtis, Keith R
AU  - Offit, Kenneth
AU  - Li, Li
AU  - Le Marchand, Loic
AU  - Vodickova, Ludmila
AU  - Gunter, Marc J
AU  - Jenkins, Mark A
AU  - Slattery, Martha L
AU  - Lemire, Mathieu
AU  - Woods, Michael O
AU  - Song, Mingyang
AU  - Murphy, Neil
AU  - Lindor, Noralane M
AU  - Dikilitas, Ozan
AU  - Pharoah, Paul D P
AU  - Campbell, Peter T
AU  - Newcomb, Polly A
AU  - Milne, Roger L
AU  - MacInnis, Robert J
AU  - Castellví-Bel, Sergi
AU  - Ogino, Shuji
AU  - Berndt, Sonja I
AU  - Bézieau, Stéphane
AU  - Thibodeau, Stephen N
AU  - Gallinger, Steven J
AU  - Zaidi, Syed H
AU  - Harrison, Tabitha A
AU  - Keku, Temitope O
AU  - Hudson, Thomas J
AU  - Vymetalkova, Veronika
AU  - Moreno, Victor
AU  - Martín, Vicente
AU  - Arndt, Volker
AU  - Wei, Wei-Qi
AU  - Chung, Wendy
AU  - Su, Yu-Ru
AU  - Hayes, Richard B
AU  - White, Emily
AU  - Vodicka, Pavel
AU  - Casey, Graham
AU  - Gruber, Stephen B
AU  - Schoen, Robert E
AU  - Chan, Andrew T
AU  - Potter, John D
AU  - Brenner, Hermann
AU  - Jarvik, Gail P
AU  - Corley, Douglas A
AU  - Peters, Ulrike
AU  - Hsu, Li
TI  - Genome-wide Modeling of Polygenic Risk Score in Colorectal Cancer Risk.
JO  - The American journal of human genetics
VL  - 107
IS  - 3
SN  - 0002-9297
CY  - New York, NY
PB  - Elsevier
M1  - DKFZ-2020-01615
SP  - 432-444
PY  - 2020
N1  - 2020 Sep 3;107(3):432-444
AB  - Accurate colorectal cancer (CRC) risk prediction models are critical for identifying individuals at low and high risk of developing CRC, as they can then be offered targeted screening and interventions to address their risks of developing disease (if they are in a high-risk group) and avoid unnecessary screening and interventions (if they are in a low-risk group). As it is likely that thousands of genetic variants contribute to CRC risk, it is clinically important to investigate whether these genetic variants can be used jointly for CRC risk prediction. In this paper, we derived and compared different approaches to generating predictive polygenic risk scores (PRS) from genome-wide association studies (GWASs) including 55,105 CRC-affected case subjects and 65,079 control subjects of European ancestry. We built the PRS in three ways, using (1) 140 previously identified and validated CRC loci; (2) SNP selection based on linkage disequilibrium (LD) clumping followed by machine-learning approaches; and (3) LDpred, a Bayesian approach for genome-wide risk prediction. We tested the PRS in an independent cohort of 101,987 individuals with 1,699 CRC-affected case subjects. The discriminatory accuracy, calculated by the age- and sex-adjusted area under the receiver operating characteristics curve (AUC), was highest for the LDpred-derived PRS (AUC = 0.654) including nearly 1.2 M genetic variants (the proportion of causal genetic variants for CRC assumed to be 0.003), whereas the PRS of the 140 known variants identified from GWASs had the lowest AUC (AUC = 0.629). Based on the LDpred-derived PRS, we are able to identify 30
LB  - PUB:(DE-HGF)16
C6  - pmid:32758450
DO  - DOI:10.1016/j.ajhg.2020.07.006
UR  - https://inrepo02.dkfz.de/record/157420
ER  -