Journal Article DKFZ-2020-01615

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Genome-wide Modeling of Polygenic Risk Score in Colorectal Cancer Risk.

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2020
Elsevier New York, NY

The American journal of human genetics 107(3), 432-444 () [10.1016/j.ajhg.2020.07.006]
 GO

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Accurate colorectal cancer (CRC) risk prediction models are critical for identifying individuals at low and high risk of developing CRC, as they can then be offered targeted screening and interventions to address their risks of developing disease (if they are in a high-risk group) and avoid unnecessary screening and interventions (if they are in a low-risk group). As it is likely that thousands of genetic variants contribute to CRC risk, it is clinically important to investigate whether these genetic variants can be used jointly for CRC risk prediction. In this paper, we derived and compared different approaches to generating predictive polygenic risk scores (PRS) from genome-wide association studies (GWASs) including 55,105 CRC-affected case subjects and 65,079 control subjects of European ancestry. We built the PRS in three ways, using (1) 140 previously identified and validated CRC loci; (2) SNP selection based on linkage disequilibrium (LD) clumping followed by machine-learning approaches; and (3) LDpred, a Bayesian approach for genome-wide risk prediction. We tested the PRS in an independent cohort of 101,987 individuals with 1,699 CRC-affected case subjects. The discriminatory accuracy, calculated by the age- and sex-adjusted area under the receiver operating characteristics curve (AUC), was highest for the LDpred-derived PRS (AUC = 0.654) including nearly 1.2 M genetic variants (the proportion of causal genetic variants for CRC assumed to be 0.003), whereas the PRS of the 140 known variants identified from GWASs had the lowest AUC (AUC = 0.629). Based on the LDpred-derived PRS, we are able to identify 30% of individuals without a family history as having risk for CRC similar to those with a family history of CRC, whereas the PRS based on known GWAS variants identified only top 10% as having a similar relative risk. About 90% of these individuals have no family history and would have been considered average risk under current screening guidelines, but might benefit from earlier screening. The developed PRS offers a way for risk-stratified CRC screening and other targeted interventions.

Classification:

Note: 2020 Sep 3;107(3):432-444

Contributing Institute(s):
  1. C070 Klinische Epidemiologie und Alternf. (C070)
  2. C020 Epidemiologie von Krebs (C020)
  3. Präventive Onkologie (C120)
  4. DKTK HD zentral (HD01)
Research Program(s):
  1. 313 - Cancer risk factors and prevention (POF3-313) (POF3-313)

Appears in the scientific report 2020
Database coverage:
Medline ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Clinical Medicine ; Current Contents - Life Sciences ; Ebsco Academic Search ; Essential Science Indicators ; IF >= 5 ; JCR ; NCBI Molecular Biology Database ; PubMed Central ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > C020
Public records
Publications database

 Record created 2020-08-11, last modified 2024-02-29



Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)