001     157420
005     20240229123137.0
024 7 _ |a 10.1016/j.ajhg.2020.07.006
|2 doi
024 7 _ |a pmid:32758450
|2 pmid
024 7 _ |a 0002-9297
|2 ISSN
024 7 _ |a 1537-6605
|2 ISSN
024 7 _ |a altmetric:87222048
|2 altmetric
037 _ _ |a DKFZ-2020-01615
041 _ _ |a eng
082 _ _ |a 570
100 1 _ |a Thomas, Minta
|b 0
245 _ _ |a Genome-wide Modeling of Polygenic Risk Score in Colorectal Cancer Risk.
260 _ _ |a New York, NY
|c 2020
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1601531458_32562
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2020 Sep 3;107(3):432-444
520 _ _ |a Accurate colorectal cancer (CRC) risk prediction models are critical for identifying individuals at low and high risk of developing CRC, as they can then be offered targeted screening and interventions to address their risks of developing disease (if they are in a high-risk group) and avoid unnecessary screening and interventions (if they are in a low-risk group). As it is likely that thousands of genetic variants contribute to CRC risk, it is clinically important to investigate whether these genetic variants can be used jointly for CRC risk prediction. In this paper, we derived and compared different approaches to generating predictive polygenic risk scores (PRS) from genome-wide association studies (GWASs) including 55,105 CRC-affected case subjects and 65,079 control subjects of European ancestry. We built the PRS in three ways, using (1) 140 previously identified and validated CRC loci; (2) SNP selection based on linkage disequilibrium (LD) clumping followed by machine-learning approaches; and (3) LDpred, a Bayesian approach for genome-wide risk prediction. We tested the PRS in an independent cohort of 101,987 individuals with 1,699 CRC-affected case subjects. The discriminatory accuracy, calculated by the age- and sex-adjusted area under the receiver operating characteristics curve (AUC), was highest for the LDpred-derived PRS (AUC = 0.654) including nearly 1.2 M genetic variants (the proportion of causal genetic variants for CRC assumed to be 0.003), whereas the PRS of the 140 known variants identified from GWASs had the lowest AUC (AUC = 0.629). Based on the LDpred-derived PRS, we are able to identify 30% of individuals without a family history as having risk for CRC similar to those with a family history of CRC, whereas the PRS based on known GWAS variants identified only top 10% as having a similar relative risk. About 90% of these individuals have no family history and would have been considered average risk under current screening guidelines, but might benefit from earlier screening. The developed PRS offers a way for risk-stratified CRC screening and other targeted interventions.
536 _ _ |a 313 - Cancer risk factors and prevention (POF3-313)
|0 G:(DE-HGF)POF3-313
|c POF3-313
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Sakoda, Lori C
|b 1
700 1 _ |a Hoffmeister, Michael
|0 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f
|b 2
|u dkfz
700 1 _ |a Rosenthal, Elisabeth A
|b 3
700 1 _ |a Lee, Jeffrey K
|b 4
700 1 _ |a van Duijnhoven, Franzel J B
|b 5
700 1 _ |a Platz, Elizabeth A
|b 6
700 1 _ |a Wu, Anna H
|b 7
700 1 _ |a Dampier, Christopher H
|b 8
700 1 _ |a de la Chapelle, Albert
|b 9
700 1 _ |a Wolk, Alicja
|b 10
700 1 _ |a Joshi, Amit D
|b 11
700 1 _ |a Burnett-Hartman, Andrea
|b 12
700 1 _ |a Gsur, Andrea
|b 13
700 1 _ |a Lindblom, Annika
|b 14
700 1 _ |a Castells, Antoni
|b 15
700 1 _ |a Win, Aung Ko
|b 16
700 1 _ |a Namjou, Bahram
|b 17
700 1 _ |a Van Guelpen, Bethany
|b 18
700 1 _ |a Tangen, Catherine M
|b 19
700 1 _ |a He, Qianchuan
|b 20
700 1 _ |a Li, Christopher I
|b 21
700 1 _ |a Schafmayer, Clemens
|b 22
700 1 _ |a Joshu, Corinne E
|b 23
700 1 _ |a Ulrich, Cornelia M
|b 24
700 1 _ |a Bishop, D Timothy
|b 25
700 1 _ |a Buchanan, Daniel D
|b 26
700 1 _ |a Schaid, Daniel
|b 27
700 1 _ |a Drew, David A
|b 28
700 1 _ |a Muller, David C
|b 29
700 1 _ |a Duggan, David
|b 30
700 1 _ |a Crosslin, David R
|b 31
700 1 _ |a Albanes, Demetrius
|b 32
700 1 _ |a Giovannucci, Edward L
|b 33
700 1 _ |a Larson, Eric
|b 34
700 1 _ |a Qu, Flora
|b 35
700 1 _ |a Mentch, Frank
|b 36
700 1 _ |a Giles, Graham G
|b 37
700 1 _ |a Hakonarson, Hakon
|b 38
700 1 _ |a Hampel, Heather
|b 39
700 1 _ |a Stanaway, Ian B
|b 40
700 1 _ |a Figueiredo, Jane C
|b 41
700 1 _ |a Huyghe, Jeroen R
|b 42
700 1 _ |a Minnier, Jessica
|b 43
700 1 _ |a Chang-Claude, Jenny
|0 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253
|b 44
|u dkfz
700 1 _ |a Hampe, Jochen
|b 45
700 1 _ |a Harley, John B
|b 46
700 1 _ |a Visvanathan, Kala
|b 47
700 1 _ |a Curtis, Keith R
|b 48
700 1 _ |a Offit, Kenneth
|b 49
700 1 _ |a Li, Li
|b 50
700 1 _ |a Le Marchand, Loic
|b 51
700 1 _ |a Vodickova, Ludmila
|b 52
700 1 _ |a Gunter, Marc J
|b 53
700 1 _ |a Jenkins, Mark A
|b 54
700 1 _ |a Slattery, Martha L
|b 55
700 1 _ |a Lemire, Mathieu
|b 56
700 1 _ |a Woods, Michael O
|b 57
700 1 _ |a Song, Mingyang
|b 58
700 1 _ |a Murphy, Neil
|b 59
700 1 _ |a Lindor, Noralane M
|b 60
700 1 _ |a Dikilitas, Ozan
|b 61
700 1 _ |a Pharoah, Paul D P
|b 62
700 1 _ |a Campbell, Peter T
|b 63
700 1 _ |a Newcomb, Polly A
|b 64
700 1 _ |a Milne, Roger L
|b 65
700 1 _ |a MacInnis, Robert J
|b 66
700 1 _ |a Castellví-Bel, Sergi
|b 67
700 1 _ |a Ogino, Shuji
|b 68
700 1 _ |a Berndt, Sonja I
|b 69
700 1 _ |a Bézieau, Stéphane
|b 70
700 1 _ |a Thibodeau, Stephen N
|b 71
700 1 _ |a Gallinger, Steven J
|b 72
700 1 _ |a Zaidi, Syed H
|b 73
700 1 _ |a Harrison, Tabitha A
|b 74
700 1 _ |a Keku, Temitope O
|b 75
700 1 _ |a Hudson, Thomas J
|b 76
700 1 _ |a Vymetalkova, Veronika
|b 77
700 1 _ |a Moreno, Victor
|b 78
700 1 _ |a Martín, Vicente
|b 79
700 1 _ |a Arndt, Volker
|0 P:(DE-He78)d023fdf423d87ee6c710e34dd7581fa0
|b 80
|u dkfz
700 1 _ |a Wei, Wei-Qi
|b 81
700 1 _ |a Chung, Wendy
|b 82
700 1 _ |a Su, Yu-Ru
|b 83
700 1 _ |a Hayes, Richard B
|b 84
700 1 _ |a White, Emily
|b 85
700 1 _ |a Vodicka, Pavel
|b 86
700 1 _ |a Casey, Graham
|b 87
700 1 _ |a Gruber, Stephen B
|b 88
700 1 _ |a Schoen, Robert E
|b 89
700 1 _ |a Chan, Andrew T
|b 90
700 1 _ |a Potter, John D
|b 91
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 92
|u dkfz
700 1 _ |a Jarvik, Gail P
|b 93
700 1 _ |a Corley, Douglas A
|b 94
700 1 _ |a Peters, Ulrike
|b 95
700 1 _ |a Hsu, Li
|b 96
773 _ _ |a 10.1016/j.ajhg.2020.07.006
|g p. S0002929720302366
|0 PERI:(DE-600)1473813-2
|n 3
|p 432-444
|t The American journal of human genetics
|v 107
|y 2020
|x 0002-9297
909 C O |o oai:inrepo02.dkfz.de:157420
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 44
|6 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 80
|6 P:(DE-He78)d023fdf423d87ee6c710e34dd7581fa0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 92
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|2 G:(DE-HGF)POF3-300
|v Cancer risk factors and prevention
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2020-01-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-01-03
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b AM J HUM GENET : 2018
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-03
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-03
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b AM J HUM GENET : 2018
|d 2020-01-03
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l C020 Epidemiologie von Krebs
|x 1
920 1 _ |0 I:(DE-He78)C120-20160331
|k C120
|l Präventive Onkologie
|x 2
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a I:(DE-He78)C120-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21