Journal Article DKFZ-2020-01785

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Drivers underpinning the malignant transformation of giant cell tumour of bone.

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2020
Wiley Bognor Regis [u.a.]

The journal of pathology 252(4), 433-440 () [10.1002/path.5537]
 GO

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: The rare benign giant cell tumour of bone (GCTB) is defined by an almost unique mutation in the H3.3 family of histone genes H3-3A or H3-3B, however the same mutation is occasionally found in primary malignant bone tumours which share many features with the benign variant. Moreover, lung metastases can occur despite the absence of malignant histological features in either the primary or metastatic lesions. Herein we investigated the genetic events of 17 GCTBs including benign and malignant variants and the methylation profiles of 122 bone tumour samples including GCTBs. Benign GCTBs possessed few somatic alterations and no other known drivers besides the H3.3 mutation, whereas all malignant tumours harboured at least one additional driver mutation and exhibited genomic features resembling osteosarcomas, including high mutational burden, additional driver event(s) and a high degree of aneuploidy. The H3.3 mutation was found to predate the development of aneuploidy. In contrast to osteosarcomas, malignant H3.3-mutated tumours were enriched for a variety of alterations involving TERT, other than amplification, suggesting telomere dysfunction in the transformation of benign to malignant GCTB. DNA sequencing of the benign metastasising GCTB revealed no additional driver alterations; polyclonal seeding in the lung was identified, implying that the metastatic lesions represent an embolic event. Unsupervised clustering of DNA methylation profiles revealed that malignant H3.3- mutated tumours are distinct from their benign counterpart, and other bone tumours. Differential methylation analysis identified CCND1, encoding cyclin D1, as a plausible cancer driver gene in these tumours because hypermethylation of the CCND1 promoter was specific for GCTBs. We report here the genomic and methylation patterns underlying the rare clinical phenomena of benign metastasising and malignant transformation of GCTB and show how the combination of genomic and epigenomic findings could potentially distinguish benign from malignant GCTBs, thereby predicting aggressive behaviour in challenging diagnostic cases. This article is protected by copyright. All rights reserved.

Classification:

Note: 2020 Dec;252(4):433-440

Contributing Institute(s):
  1. B062 Pädiatrische Neuroonkologie (B062)
  2. DKTK HD zentral (HD01)
  3. Pediatric Glioma (B360)
Research Program(s):
  1. 312 - Functional and structural genomics (POF3-312) (POF3-312)

Appears in the scientific report 2020
Database coverage:
Medline ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Clinical Medicine ; Current Contents - Life Sciences ; DEAL Wiley ; Essential Science Indicators ; IF >= 5 ; JCR ; NCBI Molecular Biology Database ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Public records
Publications database

 Record created 2020-09-03, last modified 2024-02-29



Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)