Home > Publications database > Metabolomics profiling of visceral and abdominal subcutaneous adipose tissue in colorectal cancer patients: results from the ColoCare study. > print |
001 | 157754 | ||
005 | 20240229123144.0 | ||
024 | 7 | _ | |a 10.1007/s10552-020-01312-1 |2 doi |
024 | 7 | _ | |a pmid:32430684 |2 pmid |
024 | 7 | _ | |a pmc:PMC7425810 |2 pmc |
024 | 7 | _ | |a 0957-5243 |2 ISSN |
024 | 7 | _ | |a 1573-7225 |2 ISSN |
024 | 7 | _ | |a altmetric:82574575 |2 altmetric |
037 | _ | _ | |a DKFZ-2020-01791 |
041 | _ | _ | |a eng |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Ose, Jennifer |b 0 |
245 | _ | _ | |a Metabolomics profiling of visceral and abdominal subcutaneous adipose tissue in colorectal cancer patients: results from the ColoCare study. |
260 | _ | _ | |a Dordrecht [u.a.] |c 2020 |b Springer Science + Business Media B.V. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1599118402_16185 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Underlying mechanisms of the relationship between body fatness and colorectal cancer remain unclear. This study investigated associations of circulating metabolites with visceral (VFA), abdominal subcutaneous (SFA), and total fat area (TFA) in colorectal cancer patients.Pre-surgery plasma samples from 212 patients (stage I-IV) from the ColoCare Study were used to perform targeted metabolomics. VFA, SFA, and TFA were quantified by computed tomography scans. Partial correlation and linear regression analyses of VFA, SFA, and TFA with metabolites were computed and corrected for multiple testing. Cox proportional hazards were used to assess 2-year survival.In patients with metastatic tumors, SFA and TFA were statistically significantly inversely associated with 16 glycerophospholipids (SFA: pFDR range 0.017-0.049; TFA: pFDR range 0.029-0.048), while VFA was not. Doubling of ten of the aforementioned glycerophospholipids was associated with increased risk of death in patients with metastatic tumors, but not in patients with non-metastatic tumors (phet range: 0.00044-0.049). Doubling of PC ae C34:0 was associated with ninefold increased risk of death in metastatic tumors (Hazard Ratio [HR], 9.05; 95% confidence interval [CI] 2.17-37.80); an inverse association was observed in non-metastatic tumors (HR 0.17; 95% CI 0.04-0.87; phet = 0.00044).These data provide initial evidence that glycerophospholipids in metastatic colorectal cancer are uniquely associated with subcutaneous adiposity, and may impact overall survival. |
536 | _ | _ | |a 313 - Cancer risk factors and prevention (POF3-313) |0 G:(DE-HGF)POF3-313 |c POF3-313 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, |
650 | _ | 2 | |a Adiposity |2 MeSH |
650 | _ | 2 | |a Adolescent |2 MeSH |
650 | _ | 2 | |a Adult |2 MeSH |
650 | _ | 2 | |a Aged |2 MeSH |
650 | _ | 2 | |a Aged, 80 and over |2 MeSH |
650 | _ | 2 | |a Body Mass Index |2 MeSH |
650 | _ | 2 | |a Colorectal Neoplasms: diagnostic imaging |2 MeSH |
650 | _ | 2 | |a Colorectal Neoplasms: metabolism |2 MeSH |
650 | _ | 2 | |a Colorectal Neoplasms: pathology |2 MeSH |
650 | _ | 2 | |a Female |2 MeSH |
650 | _ | 2 | |a Humans |2 MeSH |
650 | _ | 2 | |a Intra-Abdominal Fat: diagnostic imaging |2 MeSH |
650 | _ | 2 | |a Intra-Abdominal Fat: metabolism |2 MeSH |
650 | _ | 2 | |a Male |2 MeSH |
650 | _ | 2 | |a Metabolomics |2 MeSH |
650 | _ | 2 | |a Middle Aged |2 MeSH |
650 | _ | 2 | |a Neoplasm Staging |2 MeSH |
650 | _ | 2 | |a Subcutaneous Fat, Abdominal: diagnostic imaging |2 MeSH |
650 | _ | 2 | |a Subcutaneous Fat, Abdominal: metabolism |2 MeSH |
650 | _ | 2 | |a Tomography, X-Ray Computed |2 MeSH |
650 | _ | 2 | |a Young Adult |2 MeSH |
700 | 1 | _ | |a Holowatyj, Andreana N |b 1 |
700 | 1 | _ | |a Nattenmüller, Johanna |b 2 |
700 | 1 | _ | |a Gigic, Biljana |b 3 |
700 | 1 | _ | |a Lin, Tengda |b 4 |
700 | 1 | _ | |a Himbert, Caroline |b 5 |
700 | 1 | _ | |a Habermann, Nina |b 6 |
700 | 1 | _ | |a Achaintre, David |b 7 |
700 | 1 | _ | |a Scalbert, Augustin |b 8 |
700 | 1 | _ | |a Keski-Rahkonen, Pekka |b 9 |
700 | 1 | _ | |a Böhm, Jürgen |b 10 |
700 | 1 | _ | |a Schrotz-King, Petra |0 P:(DE-He78)01ef71f71b01a3ec3b698653fd43fe86 |b 11 |u dkfz |
700 | 1 | _ | |a Schneider, Martin |b 12 |
700 | 1 | _ | |a Ulrich, Alexis |b 13 |
700 | 1 | _ | |a Kampman, Ellen |b 14 |
700 | 1 | _ | |a Weijenberg, Matty |b 15 |
700 | 1 | _ | |a Gsur, Andrea |b 16 |
700 | 1 | _ | |a Ueland, Per-Magne |b 17 |
700 | 1 | _ | |a Kauczor, Hans-Ulrich |b 18 |
700 | 1 | _ | |a Ulrich, Cornelia M |b 19 |
773 | _ | _ | |a 10.1007/s10552-020-01312-1 |g Vol. 31, no. 8, p. 723 - 735 |0 PERI:(DE-600)1496544-6 |n 8 |p 723 - 735 |t Cancer causes & control |v 31 |y 2020 |x 1573-7225 |
909 | C | O | |o oai:inrepo02.dkfz.de:157754 |p VDB |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 11 |6 P:(DE-He78)01ef71f71b01a3ec3b698653fd43fe86 |
913 | 1 | _ | |a DE-HGF |l Krebsforschung |1 G:(DE-HGF)POF3-310 |0 G:(DE-HGF)POF3-313 |2 G:(DE-HGF)POF3-300 |v Cancer risk factors and prevention |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Gesundheit |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2020-01-16 |w ger |
915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |d 2020-01-16 |w ger |
915 | _ | _ | |a DEAL Springer |0 StatID:(DE-HGF)3002 |2 StatID |d 2020-01-16 |w ger |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b CANCER CAUSE CONTROL : 2018 |d 2020-01-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-01-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-01-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |d 2020-01-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-01-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1110 |2 StatID |b Current Contents - Clinical Medicine |d 2020-01-16 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |d 2020-01-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-01-16 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |d 2020-01-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-01-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2020-01-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2020-01-16 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-01-16 |
920 | 1 | _ | |0 I:(DE-He78)C120-20160331 |k C120 |l Präventive Onkologie |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)C120-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|