000164247 001__ 164247
000164247 005__ 20240229133513.0
000164247 0247_ $$2doi$$a10.1002/ijc.33369
000164247 0247_ $$2pmid$$apmid:33128820
000164247 0247_ $$2ISSN$$a0020-7136
000164247 0247_ $$2ISSN$$a1097-0215
000164247 0247_ $$2altmetric$$aaltmetric:93566194
000164247 037__ $$aDKFZ-2020-02338
000164247 041__ $$aeng
000164247 082__ $$a610
000164247 1001_ $$00000-0002-7572-9715$$aSaberi Hosnijeh, Fatemeh$$b0
000164247 245__ $$aAssociation between anthropometry and lifestyle factors and risk of B cell lymphoma: an exposome wide analysis.
000164247 260__ $$aBognor Regis$$bWiley-Liss$$c2021
000164247 3367_ $$2DRIVER$$aarticle
000164247 3367_ $$2DataCite$$aOutput Types/Journal article
000164247 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1620820413_3805
000164247 3367_ $$2BibTeX$$aARTICLE
000164247 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000164247 3367_ $$00$$2EndNote$$aJournal Article
000164247 500__ $$a2021 May 1;148(9):2115-2128
000164247 520__ $$aTo better understand the role of individual and lifestyle factors in human disease, an exposome-wide association study was performed to investigate within a single study anthropometry measures and lifestyle factors previously associated with B-cell lymphoma (BCL). Within the European Prospective Investigation into Cancer and nutrition study, 2,402 incident BCL cases were diagnosed from 475,426 participants that were followed-up on average 14 years. Standard and penalized Cox regression models as well as principal component (PC) analysis were used to evaluate 84 exposures in relation to BCL risk. Standard and penalized Cox regression models showed a positive association between anthropometric measures and BCL and multiple myeloma/plasma cell neoplasm (MM). The penalized Cox models additionally showed the association between several exposures from categories of physical activity, smoking status, medical history, socioeconomic position, and diet and BCL and/or the subtypes. PC analyses confirmed the individual associations but also showed additional observations. The PC5 including anthropometry, was positively associated with BCL, diffuse large B-cell lymphoma (DLBCL), and MM. There was a significant positive association between consumption of sugar and confectionary (PC11) and follicular lymphoma risk, and an inverse association between fish and shellfish and Vitamin D (PC15) and DLBCL risk. The PC1 including features of the Mediterranean diet and diet with lower inflammatory score showed an inverse association with BCL risk, while the PC7, including dairy, was positively associated with BCL and DLBCL risk. Physical activity (PC10) was positively associated with DLBCL risk among women. This study provided informative insights on the etiology of BCL.
000164247 536__ $$0G:(DE-HGF)POF4-313$$a313 - Krebsrisikofaktoren und Prävention (POF4-313)$$cPOF4-313$$fPOF IV$$x0
000164247 588__ $$aDataset connected to CrossRef, PubMed,
000164247 7001_ $$00000-0002-7874-3707$$aCasabonne, Delphine$$b1
000164247 7001_ $$aNieters, Alexandra$$b2
000164247 7001_ $$aSolans, Marta$$b3
000164247 7001_ $$00000-0003-1049-6225$$aNaudin, Sabine$$b4
000164247 7001_ $$00000-0001-9358-7338$$aFerrari, Pietro$$b5
000164247 7001_ $$aMckay, James D$$b6
000164247 7001_ $$aBenavente, Yolanda$$b7
000164247 7001_ $$00000-0003-2237-0128$$aWeiderpass, Elisabete$$b8
000164247 7001_ $$aFreisling, Heinz$$b9
000164247 7001_ $$00000-0001-7157-419X$$aSeveri, Gianluca$$b10
000164247 7001_ $$00000-0002-5956-5693$$aBoutron Ruault, Marie-Christine$$b11
000164247 7001_ $$00000-0003-4364-7173$$aBesson, Caroline$$b12
000164247 7001_ $$aAgnoli, Claudia$$b13
000164247 7001_ $$aMasala, Giovanna$$b14
000164247 7001_ $$00000-0002-8008-5096$$aSacerdote, Carlotta$$b15
000164247 7001_ $$aTumino, Rosario$$b16
000164247 7001_ $$aHuerta, José María$$b17
000164247 7001_ $$aAmiano, Pilar$$b18
000164247 7001_ $$aRodriguez-Barranco, Miguel$$b19
000164247 7001_ $$aBonet, Catalina$$b20
000164247 7001_ $$aBarricarte, Aurelio$$b21
000164247 7001_ $$00000-0001-9219-4436$$aChristakoudi, Sofia$$b22
000164247 7001_ $$aKnuppel, Anika$$b23
000164247 7001_ $$aBueno-de-Mesquita, Bas$$b24
000164247 7001_ $$aSchulze, Matthias B$$b25
000164247 7001_ $$0P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a$$aKaaks, Rudolf$$b26$$udkfz
000164247 7001_ $$0P:(DE-He78)5323704270b6393dcea70186ffd86bca$$aCanzian, Federico$$b27$$udkfz
000164247 7001_ $$aSpäth, Florentin$$b28
000164247 7001_ $$aJerkeman, Mats$$b29
000164247 7001_ $$aRylander, Charlotta$$b30
000164247 7001_ $$aTjønneland, Anne$$b31
000164247 7001_ $$aOlsen, Anja$$b32
000164247 7001_ $$aBorch, Kristin Benjaminsen$$b33
000164247 7001_ $$aVermeulen, Roel$$b34
000164247 773__ $$0PERI:(DE-600)1474822-8$$a10.1002/ijc.33369$$gp. ijc.33369$$n9$$p2115-2128$$tInternational journal of cancer$$v148$$x1097-0215$$y2021
000164247 909CO $$ooai:inrepo02.dkfz.de:164247$$pVDB
000164247 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a$$aDeutsches Krebsforschungszentrum$$b26$$kDKFZ
000164247 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)5323704270b6393dcea70186ffd86bca$$aDeutsches Krebsforschungszentrum$$b27$$kDKFZ
000164247 9130_ $$0G:(DE-HGF)POF3-313$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vCancer risk factors and prevention$$x0
000164247 9131_ $$0G:(DE-HGF)POF4-313$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vKrebsrisikofaktoren und Prävention$$x0
000164247 9141_ $$y2021
000164247 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-02-26$$wger
000164247 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-02-26$$wger
000164247 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-26
000164247 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-26
000164247 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-02-26
000164247 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-26
000164247 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-02-26
000164247 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-26
000164247 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-26
000164247 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-26
000164247 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-02-26
000164247 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-02-26
000164247 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-02-26
000164247 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J CANCER : 2018$$d2020-02-26
000164247 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-02-26
000164247 9201_ $$0I:(DE-He78)C020-20160331$$kC020$$lC020 Epidemiologie von Krebs$$x0
000164247 9201_ $$0I:(DE-He78)C055-20160331$$kC055$$lC055 Genomische Epidemiologie$$x1
000164247 980__ $$ajournal
000164247 980__ $$aVDB
000164247 980__ $$aI:(DE-He78)C020-20160331
000164247 980__ $$aI:(DE-He78)C055-20160331
000164247 980__ $$aUNRESTRICTED