% IMPORTANT: The following is UTF-8 encoded. This means that in the presence
% of non-ASCII characters, it will not work with BibTeX 0.99 or older.
% Instead, you should use an up-to-date BibTeX implementation like “bibtex8” or
% “biber”.
@ARTICLE{Bailey:165904,
author = {Bailey, Matthew H and others},
collaboration = {M. W. Group and P. n. s. m. c. m. w. group and P.
Consortium},
title = {{R}etrospective evaluation of whole exome and genome
mutation calls in 746 cancer samples.},
journal = {Nature Communications},
volume = {11},
number = {1},
issn = {2041-1723},
address = {[London]},
publisher = {Nature Publishing Group UK},
reportid = {DKFZ-2020-02461},
pages = {4748},
year = {2020},
abstract = {The Cancer Genome Atlas (TCGA) and International Cancer
Genome Consortium (ICGC) curated consensus somatic mutation
calls using whole exome sequencing (WES) and whole genome
sequencing (WGS), respectively. Here, as part of the
ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG)
Consortium, which aggregated whole genome sequencing data
from 2,658 cancers across 38 tumour types, we compare WES
and WGS side-by-side from 746 TCGA samples, finding that
$~80\%$ of mutations overlap in covered exonic regions. We
estimate that low variant allele fraction (VAF < $15\%)$ and
clonal heterogeneity contribute up to $68\%$ of private WGS
mutations and $71\%$ of private WES mutations. We observe
that $~30\%$ of private WGS mutations trace to mutations
identified by a single variant caller in WES consensus
efforts. WGS captures both $~50\%$ more variation in exonic
regions and un-observed mutations in loci with variable
GC-content. Together, our analysis highlights technological
divergences between two reproducible somatic variant
detection efforts.},
keywords = {Base Composition / DNA, Intergenic / Databases, Genetic /
Exome: genetics / Exons / Genome, Human: genetics / Humans /
Mutation / Neoplasms: genetics / Retrospective Studies /
Whole Exome Sequencing / Whole Genome Sequencing / DNA,
Intergenic (NLM Chemicals)},
cin = {B080 / HD01 / B240 / B370 / B330 / B060 / B062 / B360 /
B087 / B340 / W190 / B063 / BE01 / B066 / W610 / B260 /
B300},
ddc = {500},
cid = {I:(DE-He78)B080-20160331 / I:(DE-He78)HD01-20160331 /
I:(DE-He78)B240-20160331 / I:(DE-He78)B370-20160331 /
I:(DE-He78)B330-20160331 / I:(DE-He78)B060-20160331 /
I:(DE-He78)B062-20160331 / I:(DE-He78)B360-20160331 /
I:(DE-He78)B087-20160331 / I:(DE-He78)B340-20160331 /
I:(DE-He78)W190-20160331 / I:(DE-He78)B063-20160331 /
I:(DE-He78)BE01-20160331 / I:(DE-He78)B066-20160331 /
I:(DE-He78)W610-20160331 / I:(DE-He78)B260-20160331 /
I:(DE-He78)B300-20160331},
pnm = {312 - Functional and structural genomics (POF3-312)},
pid = {G:(DE-HGF)POF3-312},
typ = {PUB:(DE-HGF)16},
pubmed = {pmid:32958763},
pmc = {pmc:PMC7505971},
doi = {10.1038/s41467-020-18151-y},
url = {https://inrepo02.dkfz.de/record/165904},
}