001     165936
005     20240229133154.0
024 7 _ |a 10.1038/s41597-020-00716-7
|2 doi
024 7 _ |a pmid:33188205
|2 pmid
024 7 _ |a 2052-4436
|2 ISSN
024 7 _ |a 2052-4463
|2 ISSN
024 7 _ |a altmetric:94208088
|2 altmetric
037 _ _ |a DKFZ-2020-02487
041 _ _ |a eng
082 _ _ |a 500
100 1 _ |a Cai, Lina
|0 0000-0003-2598-8388
|b 0
245 _ _ |a Genome-wide association analysis of type 2 diabetes in the EPIC-InterAct study.
260 _ _ |a London
|c 2020
|b Nature Publ. Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1611752104_17269
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2020 Nov 13;7(1):393
520 _ _ |a Type 2 diabetes (T2D) is a global public health challenge. Whilst the advent of genome-wide association studies has identified >400 genetic variants associated with T2D, our understanding of its biological mechanisms and translational insights is still limited. The EPIC-InterAct project, centred in 8 countries in the European Prospective Investigations into Cancer and Nutrition study, is one of the largest prospective studies of T2D. Established as a nested case-cohort study to investigate the interplay between genetic and lifestyle behavioural factors on the risk of T2D, a total of 12,403 individuals were identified as incident T2D cases, and a representative sub-cohort of 16,154 individuals was selected from a larger cohort of 340,234 participants with a follow-up time of 3.99 million person-years. We describe the results from a genome-wide association analysis between more than 8.9 million SNPs and T2D risk among 22,326 individuals (9,978 cases and 12,348 non-cases) from the EPIC-InterAct study. The summary statistics to be shared provide a valuable resource to facilitate further investigations into the genetics of T2D.
536 _ _ |a 323 - Metabolic Dysfunction as Risk Factor (POF3-323)
|0 G:(DE-HGF)POF3-323
|c POF3-323
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Wheeler, Eleanor
|0 0000-0002-8616-6444
|b 1
700 1 _ |a Kerrison, Nicola D
|b 2
700 1 _ |a Luan, Jian'an
|0 0000-0003-3137-6337
|b 3
700 1 _ |a Deloukas, Panos
|0 0000-0001-9251-070X
|b 4
700 1 _ |a Franks, Paul W
|b 5
700 1 _ |a Amiano, Pilar
|b 6
700 1 _ |a Ardanaz, Eva
|b 7
700 1 _ |a Bonet, Catalina
|b 8
700 1 _ |a Fagherazzi, Guy
|b 9
700 1 _ |a Groop, Leif C
|0 0000-0002-0187-3263
|b 10
700 1 _ |a Kaaks, Rudolf
|0 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a
|b 11
|u dkfz
700 1 _ |a Huerta, José María
|0 0000-0002-9637-3869
|b 12
700 1 _ |a Masala, Giovanna
|0 0000-0002-5758-9069
|b 13
700 1 _ |a Nilsson, Peter M
|0 0000-0002-5652-8459
|b 14
700 1 _ |a Overvad, Kim
|0 0000-0001-6429-7921
|b 15
700 1 _ |a Pala, Valeria
|b 16
700 1 _ |a Panico, Salvatore
|b 17
700 1 _ |a Rodriguez-Barranco, Miguel
|b 18
700 1 _ |a Rolandsson, Olov
|b 19
700 1 _ |a Sacerdote, Carlotta
|b 20
700 1 _ |a Schulze, Matthias B
|0 0000-0002-0830-5277
|b 21
700 1 _ |a Spijkerman, Annemieke M W
|b 22
700 1 _ |a Tjonneland, Anne
|b 23
700 1 _ |a Tumino, Rosario
|0 0000-0003-2666-414X
|b 24
700 1 _ |a van der Schouw, Yvonne T
|0 0000-0002-4605-435X
|b 25
700 1 _ |a Sharp, Stephen J
|b 26
700 1 _ |a Forouhi, Nita G
|0 0000-0002-5041-248X
|b 27
700 1 _ |a Riboli, Elio
|b 28
700 1 _ |a McCarthy, Mark I
|b 29
700 1 _ |a Barroso, Inês
|0 0000-0001-5800-4520
|b 30
700 1 _ |a Langenberg, Claudia
|0 0000-0002-5017-7344
|b 31
700 1 _ |a Wareham, Nicholas J
|b 32
773 _ _ |a 10.1038/s41597-020-00716-7
|g Vol. 7, no. 1, p. 393
|0 PERI:(DE-600)2775191-0
|n 1
|p 393
|t Scientific data
|v 7
|y 2020
|x 2052-4463
909 C O |p VDB
|o oai:inrepo02.dkfz.de:165936
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a
913 1 _ |a DE-HGF
|b Gesundheit
|l Herz-Kreislauf-Stoffwechselerkrankungen
|1 G:(DE-HGF)POF3-320
|0 G:(DE-HGF)POF3-323
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Metabolic Dysfunction as Risk Factor
|x 0
914 1 _ |y 2020
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI DATA : 2018
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-09-06
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2020-09-06
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-09-06
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-06
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b SCI DATA : 2018
|d 2020-09-06
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-09-06
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-09-06
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l C020 Epidemiologie von Krebs
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21