Home > Publications database > Metabolic Signatures of Healthy Lifestyle Patterns and Colorectal Cancer Risk in a European Cohort. > print |
001 | 166199 | ||
005 | 20250821110121.0 | ||
024 | 7 | _ | |2 pmid |a pmid:33279777 |
024 | 7 | _ | |2 ISSN |a 1542-3565 |
024 | 7 | _ | |2 ISSN |a 1542-7714 |
024 | 7 | _ | |2 doi |a 10.1016/j.cgh.2020.11.045 |
024 | 7 | _ | |2 altmetric |a altmetric:95558462 |
037 | _ | _ | |a DKFZ-2020-02701 |
041 | _ | _ | |a eng |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Rothwell, Joseph A |b 0 |
245 | _ | _ | |a Metabolic Signatures of Healthy Lifestyle Patterns and Colorectal Cancer Risk in a European Cohort. |
260 | _ | _ | |a New York, NY |b Elsevier Science |c 2022 |
336 | 7 | _ | |2 DRIVER |a article |
336 | 7 | _ | |2 DataCite |a Output Types/Journal article |
336 | 7 | _ | |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |a Journal Article |b journal |m journal |s 1651057933_21832 |
336 | 7 | _ | |2 BibTeX |a ARTICLE |
336 | 7 | _ | |2 ORCID |a JOURNAL_ARTICLE |
336 | 7 | _ | |0 0 |2 EndNote |a Journal Article |
500 | _ | _ | |a 2022 May;20(5):e1061-e1082 |
520 | _ | _ | |a Colorectal cancer risk can be lowered by adherence to the World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR) guidelines. We derived metabolic signatures of adherence to these guidelines and tested their associations with colorectal cancer risk in the European Prospective Investigation into Cancer (EPIC) cohort.Scores reflecting adherence to the WCRF/AICR recommendations (scale 1-5) were calculated from participant data on weight maintenance, physical activity, diet, and alcohol among a discovery set of 5,738 cancer-free EPIC participants with metabolomics data. Partial least squares regression was used to derive fatty acid and endogenous metabolite signatures of WCRF/AICR score in this group. In an independent set of 1,608 colorectal cancer cases and matched controls, odds ratios (OR) and 95% confidence intervals (CI) were calculated for colorectal cancer risk per unit increase in WCRF/AICR score and per the corresponding change in metabolic signatures using multivariable conditional logistic regression.Higher WCRF/AICR scores were characterized by metabolic signatures of elevated odd-chain fatty acids, serine, glycine and specific phosphatidylcholines. Signatures were more strongly inversely associated with colorectal cancer risk (fatty acids: OR 0.51 per unit increase, 95% CI 0.29-0.90; endogenous metabolites: OR 0.62 per unit change, 95% CI 0.50-0.78) than the WCRF/AICR score (OR 0.93 per unit change, 95% CI 0.86-1.00) overall. Signature associations were stronger in male compared to female participants.Metabolite profiles reflecting adherence to WCRF/AICR guidelines and additional lifestyle or biological risk factors were associated with colorectal cancer. Measuring a specific panel of metabolites representative of healthy or unhealthy lifestyle may identify strata of the population at higher risk of colorectal cancer. |
536 | _ | _ | |0 G:(DE-HGF)POF4-313 |a 313 - Krebsrisikofaktoren und Prävention (POF4-313) |c POF4-313 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to PubMed, |
700 | 1 | _ | |a Murphy, Neil |b 1 |
700 | 1 | _ | |a Bešević, Jelena |b 2 |
700 | 1 | _ | |a Kliemann, Nathalie |b 3 |
700 | 1 | _ | |a Jenab, Mazda |b 4 |
700 | 1 | _ | |a Ferrari, Pietro |b 5 |
700 | 1 | _ | |a Achaintre, David |b 6 |
700 | 1 | _ | |a Gicquiau, Audrey |b 7 |
700 | 1 | _ | |a Vozar, Béatrice |b 8 |
700 | 1 | _ | |a Scalbert, Augustin |b 9 |
700 | 1 | _ | |a Huybrechts, Inge |b 10 |
700 | 1 | _ | |a Freisling, Heinz |b 11 |
700 | 1 | _ | |a Prehn, Cornelia |b 12 |
700 | 1 | _ | |a Adamski, Jerzy |b 13 |
700 | 1 | _ | |a Cross, Amanda J |b 14 |
700 | 1 | _ | |a Pala, Valeria Maria |b 15 |
700 | 1 | _ | |a Boutron-Ruault, Marie-Christine |b 16 |
700 | 1 | _ | |a Dahm, Christina C |b 17 |
700 | 1 | _ | |a Overvad, Kim |b 18 |
700 | 1 | _ | |a Gram, Inger Torhild |b 19 |
700 | 1 | _ | |a Sandanger, Torkjel M |b 20 |
700 | 1 | _ | |a Skeie, Guri |b 21 |
700 | 1 | _ | |a Jakszyn, Paula |b 22 |
700 | 1 | _ | |a Tsilidis, Kostas K |b 23 |
700 | 1 | _ | |a Aleksandrova, Krasimira |b 24 |
700 | 1 | _ | |a Schulze, Matthias B |b 25 |
700 | 1 | _ | |a Hughes, David J |b 26 |
700 | 1 | _ | |a van Guelpen, Bethany |b 27 |
700 | 1 | _ | |a Bodén, Stina |b 28 |
700 | 1 | _ | |a Sánchez, Maria-José |b 29 |
700 | 1 | _ | |a Schmidt, Julie A |b 30 |
700 | 1 | _ | |0 P:(DE-He78)fb68a9386399d72d84f7f34cfc6048b4 |a Katzke, Verena |b 31 |u dkfz |
700 | 1 | _ | |0 P:(DE-He78)0907a10ba1dc8f53f04907f54f6fdcfe |a Kühn, Tilman |b 32 |u dkfz |
700 | 1 | _ | |a Colorado-Yohar, Sandra |b 33 |
700 | 1 | _ | |a Tumino, Rosario |b 34 |
700 | 1 | _ | |a Bueno-de-Mesquita, Bas |b 35 |
700 | 1 | _ | |a Vineis, Paolo |b 36 |
700 | 1 | _ | |a Masala, Giovanna |b 37 |
700 | 1 | _ | |a Panico, Salvatore |b 38 |
700 | 1 | _ | |a Eriksen, Anne Kirstine |b 39 |
700 | 1 | _ | |a Tjønneland, Anne |b 40 |
700 | 1 | _ | |a Aune, Dagfinn |b 41 |
700 | 1 | _ | |a Weiderpass, Elisabete |b 42 |
700 | 1 | _ | |a Severi, Gianluca |b 43 |
700 | 1 | _ | |a Chajès, Véronique |b 44 |
700 | 1 | _ | |a Gunter, Marc J |b 45 |
773 | _ | _ | |0 PERI:(DE-600)2102638-5 |a 10.1016/j.cgh.2020.11.045 |n 5 |p e1061-e1082 |t Clinical gastroenterology and hepatology |v 20 |x 1542-3565 |y 2022 |
909 | C | O | |o oai:inrepo02.dkfz.de:166199 |p VDB |
910 | 1 | _ | |0 I:(DE-588b)2036810-0 |6 P:(DE-He78)fb68a9386399d72d84f7f34cfc6048b4 |a Deutsches Krebsforschungszentrum |b 31 |k DKFZ |
910 | 1 | _ | |0 I:(DE-588b)2036810-0 |6 P:(DE-He78)0907a10ba1dc8f53f04907f54f6fdcfe |a Deutsches Krebsforschungszentrum |b 32 |k DKFZ |
913 | 1 | _ | |0 G:(DE-HGF)POF4-313 |1 G:(DE-HGF)POF4-310 |2 G:(DE-HGF)POF4-300 |3 G:(DE-HGF)POF4 |4 G:(DE-HGF)POF |a DE-HGF |b Gesundheit |l Krebsforschung |v Krebsrisikofaktoren und Prävention |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |0 StatID:(DE-HGF)0160 |2 StatID |a DBCoverage |b Essential Science Indicators |d 2020-09-05 |
915 | _ | _ | |0 StatID:(DE-HGF)0113 |2 StatID |a WoS |b Science Citation Index Expanded |d 2020-09-05 |
915 | _ | _ | |0 StatID:(DE-HGF)0100 |2 StatID |a JCR |b CLIN GASTROENTEROL H : 2021 |d 2022-11-16 |
915 | _ | _ | |0 StatID:(DE-HGF)0200 |2 StatID |a DBCoverage |b SCOPUS |d 2022-11-16 |
915 | _ | _ | |0 StatID:(DE-HGF)0300 |2 StatID |a DBCoverage |b Medline |d 2022-11-16 |
915 | _ | _ | |0 StatID:(DE-HGF)0199 |2 StatID |a DBCoverage |b Clarivate Analytics Master Journal List |d 2022-11-16 |
915 | _ | _ | |0 StatID:(DE-HGF)0150 |2 StatID |a DBCoverage |b Web of Science Core Collection |d 2022-11-16 |
915 | _ | _ | |0 StatID:(DE-HGF)1110 |2 StatID |a DBCoverage |b Current Contents - Clinical Medicine |d 2022-11-16 |
915 | _ | _ | |0 StatID:(DE-HGF)9910 |2 StatID |a IF >= 10 |b CLIN GASTROENTEROL H : 2021 |d 2022-11-16 |
920 | 1 | _ | |0 I:(DE-He78)C020-20160331 |k C020 |l C020 Epidemiologie von Krebs |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)C020-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|