Journal Article DKFZ-2020-02935

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Risk prediction for renal cell carcinoma: results from the European Prospective Investigation into Cancer and Nutrition (EPIC) prospective cohort study.

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2021
AACR Philadelphia, Pa.

Cancer epidemiology, biomarkers & prevention 30(3), 507-512 () [10.1158/1055-9965.EPI-20-1438]
 GO

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Early detection of renal cell carcinoma (RCC) has the potential to improve disease outcomes. No screening programme for sporadic RCC is in place. Given relatively low incidence, screening would need to focus on people at high risk of clinically meaningful disease so as to limit overdiagnosis and screen-detected false-positives.Among 192,172 participants from the EPIC cohort (including 588 incident RCC cases), we evaluated a published RCC risk prediction model (including age, sex, BMI, and smoking status) in terms of discrimination (C-statistic) and calibration (observed probability as a function of predicted probability. We used a flexible parametric survival model to develop an expanded model including age, sex, BMI, and smoking status, with the addition of self-reported history of hypertension and measured blood pressure.The previously published model yielded well-calibrated probabilities and good discrimination (C-statistic [95% CI]: 0.699 [0.679, 0.721]). Our model had slightly improved discrimination (0.714 [0.694, 0.735], bootstrap optimism-corrected C-statistic: 0.709). Despite this good performance, predicted risk was low for the vast majority of participants, with 70% of participants having 10 year risk less than 0.0025.Although the models performed well for the prediction of incident RCC, they are currently insufficiently powerful to identify individuals at substantial risk of RCC in a general population.Despite the promising performance of the EPIC RCC risk prediction model, further development of the model, possibly including biomarkers of risk, is required to enable risk-stratification of RCC.

Classification:

Note: 2021 Mar;30(3):507-512

Contributing Institute(s):
  1. C020 Epidemiologie von Krebs (C020)
Research Program(s):
  1. 313 - Krebsrisikofaktoren und Prävention (POF4-313) (POF4-313)

Appears in the scientific report 2021
Database coverage:
Medline ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Clinical Medicine ; Current Contents - Life Sciences ; Essential Science Indicators ; IF >= 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > C020
Public records
Publications database

 Record created 2020-12-23, last modified 2024-02-29



Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)