000166499 001__ 166499
000166499 005__ 20240229123230.0
000166499 0247_ $$2doi$$a10.1016/j.lungcan.2020.11.029
000166499 0247_ $$2pmid$$apmid:33352384
000166499 0247_ $$2ISSN$$a0169-5002
000166499 0247_ $$2ISSN$$a1872-8332
000166499 0247_ $$2altmetric$$aaltmetric:96539301
000166499 037__ $$aDKFZ-2020-02942
000166499 041__ $$aeng
000166499 082__ $$a610
000166499 1001_ $$aJiang, Mei$$b0
000166499 245__ $$aThe relationship between body-mass index and overall survival in non-small cell lung cancer by sex, smoking status, and race: A pooled analysis of 20,937 International lung Cancer consortium (ILCCO) patients.
000166499 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2020
000166499 3367_ $$2DRIVER$$aarticle
000166499 3367_ $$2DataCite$$aOutput Types/Journal article
000166499 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1609334050_28516
000166499 3367_ $$2BibTeX$$aARTICLE
000166499 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000166499 3367_ $$00$$2EndNote$$aJournal Article
000166499 520__ $$aThe relationship between Body-Mass-Index (BMI) and lung cancer prognosis is heterogeneous. We evaluated the impact of sex, smoking and race on the relationship between BMI and overall survival (OS) in non-small-cell-lung-cancer (NSCLC).Data from 16 individual ILCCO studies were pooled to assess interactions between BMI and the following factors on OS: self-reported race, smoking status and sex, using Cox models (adjusted hazard ratios; aHR) with interaction terms and adjusted penalized smoothing spline plots in stratified analyses.Among 20,937 NSCLC patients with BMI values, females = 47 %; never-smokers = 14 %; White-patients = 76 %. BMI showed differential survival according to race whereby compared to normal-BMI patients, being underweight was associated with poor survival among white patients (OS, aHR = 1.66) but not among black patients (aHR = 1.06; pinteraction = 0.02). Comparing overweight/obese to normal weight patients, Black NSCLC patients who were overweight/obese also had relatively better OS (pinteraction = 0.06) when compared to White-patients. BMI was least associated with survival in Asian-patients and never-smokers. The outcomes of female ever-smokers at the extremes of BMI were associated with worse outcomes in both the underweight (pinteraction<0.001) and obese categories (pinteraction = 0.004) relative to the normal-BMI category, when compared to male ever-smokers.Underweight and obese female ever-smokers were associated with worse outcomes in White-patients. These BMI associations were not observed in Asian-patients and never-smokers. Black-patients had more favorable outcomes in the extremes of BMI when compared to White-patients. Body composition in Black-patients, and NSCLC subtypes more commonly seen in Asian-patients and never-smokers, may account for differences in these BMI-OS relationships.
000166499 536__ $$0G:(DE-HGF)POF3-313$$a313 - Cancer risk factors and prevention (POF3-313)$$cPOF3-313$$fPOF III$$x0
000166499 588__ $$aDataset connected to CrossRef, PubMed,
000166499 650_7 $$2Other$$aBody mass index
000166499 650_7 $$2Other$$aInteraction
000166499 650_7 $$2Other$$aLung cancer
000166499 650_7 $$2Other$$aObesity
000166499 7001_ $$aFares, Aline F$$b1
000166499 7001_ $$aShepshelovich, Daniel$$b2
000166499 7001_ $$aYang, Ping$$b3
000166499 7001_ $$aChristiani, David$$b4
000166499 7001_ $$aZhang, Jie$$b5
000166499 7001_ $$aShiraishi, Kouya$$b6
000166499 7001_ $$aRyan, Brid M$$b7
000166499 7001_ $$aChen, Chu$$b8
000166499 7001_ $$aSchwartz, Ann G$$b9
000166499 7001_ $$aTardon, Adonina$$b10
000166499 7001_ $$aShete, Sanjay$$b11
000166499 7001_ $$aSchabath, Matthew B$$b12
000166499 7001_ $$aTeare, M Dawn$$b13
000166499 7001_ $$aLe Marchand, Loic$$b14
000166499 7001_ $$aZhang, Zuo-Feng$$b15
000166499 7001_ $$aField, John K$$b16
000166499 7001_ $$0P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aBrenner, Hermann$$b17$$udkfz
000166499 7001_ $$aDiao, Nancy$$b18
000166499 7001_ $$aXie, Juntao$$b19
000166499 7001_ $$aKohno, Takashi$$b20
000166499 7001_ $$aHarris, Curtis C$$b21
000166499 7001_ $$aWenzlaff, Angela S$$b22
000166499 7001_ $$aFernandez-Tardon, Guillermo$$b23
000166499 7001_ $$aYe, Yuanqing$$b24
000166499 7001_ $$aTaylor, Fiona$$b25
000166499 7001_ $$aWilkens, Lynne R$$b26
000166499 7001_ $$aDavies, Michael$$b27
000166499 7001_ $$aLiu, Yi$$b28
000166499 7001_ $$aBarnett, Matt J$$b29
000166499 7001_ $$aGoodman, Gary E$$b30
000166499 7001_ $$aMorgenstern, Hal$$b31
000166499 7001_ $$aHolleczek, Bernd$$b32
000166499 7001_ $$aThomas, Sera$$b33
000166499 7001_ $$aBrown, M Catherine$$b34
000166499 7001_ $$aHung, Rayjean J$$b35
000166499 7001_ $$aXu, Wei$$b36
000166499 7001_ $$aLiu, Geoffrey$$b37
000166499 773__ $$0PERI:(DE-600)2025812-4$$a10.1016/j.lungcan.2020.11.029$$gVol. 152, p. 58 - 65$$p58 - 65$$tLung cancer$$v152$$x0169-5002$$y2020
000166499 909CO $$ooai:inrepo02.dkfz.de:166499$$pVDB
000166499 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aDeutsches Krebsforschungszentrum$$b17$$kDKFZ
000166499 9131_ $$0G:(DE-HGF)POF3-313$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vCancer risk factors and prevention$$x0
000166499 9141_ $$y2020
000166499 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-08-29$$wger
000166499 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bLUNG CANCER : 2018$$d2020-08-29
000166499 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-29
000166499 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-29
000166499 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-29
000166499 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-29
000166499 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-29
000166499 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-29
000166499 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2020-08-29
000166499 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-29
000166499 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-29
000166499 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-29
000166499 9201_ $$0I:(DE-He78)C070-20160331$$kC070$$lC070 Klinische Epidemiologie und Alternf.$$x0
000166499 9201_ $$0I:(DE-He78)C120-20160331$$kC120$$lPräventive Onkologie$$x1
000166499 9201_ $$0I:(DE-He78)HD01-20160331$$kHD01$$lDKTK HD zentral$$x2
000166499 980__ $$ajournal
000166499 980__ $$aVDB
000166499 980__ $$aI:(DE-He78)C070-20160331
000166499 980__ $$aI:(DE-He78)C120-20160331
000166499 980__ $$aI:(DE-He78)HD01-20160331
000166499 980__ $$aUNRESTRICTED