Journal Article DKFZ-2021-00514

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Bayesian uncertainty quantification for magnetic resonance fingerprinting.

 ;  ;  ;  ;  ;

2021
IOP Publ. Bristol

Physics in medicine and biology 66, 075006 () [10.1088/1361-6560/abeae7]
 GO

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Magnetic Resonance Fingerprinting (MRF) is a promising technique for fast quantitative imaging of human tissue. In general, MRF is based on a sequence of highly undersampled MR images which are analyzed with a pre-computed dictionary. MRF provides valuable diagnostic parameters such as the $T_1$ and $T_2$ MR relaxation times. However, uncertainty characterization of dictionary-based MRF estimates for $T_1$ and $T_2$ has not been achieved so far, which makes it challenging to assess if observed differences in these estimates are significant and may indicate pathological changes of the underlying tissue. We propose a Bayesian approach for the uncertainty quantification of dictionary-based MRF which leads to probability distributions for $T_1$ and $T_2$ in every voxel. The distributions can be used to make probability statements about the relaxation times, and to assign uncertainties to their dictionary-based MRF estimates. All uncertainty calculations are based on the pre-computed dictionary and the observed sequence of undersampled MR images, and they can be calculated in short time. The approach is explored by analyzing MRF measurements of a phantom consisting of several tubes across which MR relaxation times are constant. The proposed uncertainty quantification is quantitatively consistent with the observed within-tube variability of estimated relaxation times. Furthermore, calculated uncertainties are shown to characterize well observed differences between the MRF estimates and the results obtained from high-accurate reference measurements. These findings indicate that a reliable uncertainty quantification is achieved. We also present results for simulated MRF data and an uncertainty quantification for an in vivo MRF measurement. MATLAB$^{\scriptsize \text{\textregistered}}$ source code implementing the proposed approach is made available.

Keyword(s): Bayesian inference ; MRF ; uncertainty

Classification:

Note: Phys. Med. Biol. 66 (2021) 075006

Contributing Institute(s):
  1. E020 Med. Physik in der Radiologie (E020)
Research Program(s):
  1. 315 - Bildgebung und Radioonkologie (POF4-315) (POF4-315)

Appears in the scientific report 2021
Database coverage:
Medline ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Life Sciences ; Ebsco Academic Search ; Essential Science Indicators ; IF < 5 ; JCR ; National-Konsortium ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > E020
Public records
Publications database

 Record created 2021-03-04, last modified 2024-03-03



Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)