001     168316
005     20240229133604.0
024 7 _ |a 10.1186/s13014-021-01789-3
|2 doi
024 7 _ |a pmid:33823885
|2 pmid
024 7 _ |a altmetric:103440520
|2 altmetric
037 _ _ |a DKFZ-2021-00826
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Niebuhr, Nina Isabelle
|0 P:(DE-He78)5c8b2018cd142f209c828d91e37a3e1a
|b 0
|e First author
|u dkfz
245 _ _ |a Biologically consistent dose accumulation using daily patient imaging.
260 _ _ |a London
|c 2021
|b BioMed Central
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1675089253_20049
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:E040#LA:E040#
520 _ _ |a This work addresses a basic inconsistency in the way dose is accumulated in radiotherapy when predicting the biological effect based on the linear quadratic model (LQM). To overcome this inconsistency, we introduce and evaluate the concept of the total biological dose, bEQDd.Daily computed tomography imaging of nine patients treated for prostate carcinoma with intensity-modulated radiotherapy was used to compute the delivered deformed dose on the basis of deformable image registration (DIR). We compared conventional dose accumulation (DA) with the newly introduced bEQDd, a new method of accumulating biological dose that considers each fraction dose and tissue radiobiology. We investigated the impact of the applied fractionation scheme (conventional/hypofractionated), uncertainties induced by the DIR and by the assigned α/β-value.bEQDd was systematically higher than the conventionally accumulated dose with difference hot spots of 3.3-4.9 Gy detected in six out of nine patients in regions of high dose gradient in the bladder and rectum. For hypofractionation, differences are up to 8.4 Gy. The difference amplitude was found to be in a similar range to worst-case uncertainties induced by DIR and was higher than that induced by α/β.Using bEQDd for dose accumulation overcomes a potential systematic inaccuracy in biological effect prediction based on accumulated dose. Highest impact is found for serial-type late responding organs at risk in dose gradient regions and for hypofractionation. Although hot spot differences are in the order of several Gray, in dose-volume parameters there is little difference compared with using conventional or biological DA. However, when local dose information is used, e.g. dose surface maps, difference hot spots can potentially change outcomes of dose-response modelling and adaptive treatment strategies.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
650 _ 7 |a Delivered dose
|2 Other
650 _ 7 |a Dose accumulation
|2 Other
650 _ 7 |a Image guidance
|2 Other
650 _ 7 |a Linear quadratic model
|2 Other
650 _ 7 |a Normal tissue response
|2 Other
650 _ 7 |a Radiobiology
|2 Other
700 1 _ |a Splinter, Mona
|0 P:(DE-He78)1f74df58d1c0f7b55b5caa01e6c7f806
|b 1
|u dkfz
700 1 _ |a Bostel, Tilman
|0 P:(DE-He78)a9a6232a4fccf84da58752c9cc24be23
|b 2
|u dkfz
700 1 _ |a Seco, Joao
|0 P:(DE-He78)102624aca75cfe987c05343d5fdcf2fe
|b 3
|u dkfz
700 1 _ |a Hentschke, Clemens M
|b 4
700 1 _ |a Floca, Ralf O
|0 P:(DE-He78)f0ab09cfecf353f363bab4cc983de95d
|b 5
|u dkfz
700 1 _ |a Hörner-Rieber, Juliane
|0 P:(DE-He78)c59ff25b48c192ed3fd4ad3a4bc9b9c0
|b 6
|u dkfz
700 1 _ |a Alber, Markus
|b 7
700 1 _ |a Huber, Peter
|0 P:(DE-He78)3291aaac20f3d603d96744c1f0890028
|b 8
|u dkfz
700 1 _ |a Nicolay, Nils H
|0 P:(DE-He78)8d52e7ff1ccaac7dbf0232fdcb0168bd
|b 9
|u dkfz
700 1 _ |a Pfaffenberger, Asja
|0 P:(DE-He78)435853c50cec6666e13c237685053577
|b 10
|e Last author
|u dkfz
773 _ _ |a 10.1186/s13014-021-01789-3
|g Vol. 16, no. 1, p. 65
|0 PERI:(DE-600)2224965-5
|n 1
|p 65
|t Radiation oncology
|v 16
|y 2021
|x 1748-717X
909 C O |p VDB
|o oai:inrepo02.dkfz.de:168316
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)5c8b2018cd142f209c828d91e37a3e1a
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)1f74df58d1c0f7b55b5caa01e6c7f806
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)a9a6232a4fccf84da58752c9cc24be23
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)102624aca75cfe987c05343d5fdcf2fe
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)f0ab09cfecf353f363bab4cc983de95d
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)c59ff25b48c192ed3fd4ad3a4bc9b9c0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)3291aaac20f3d603d96744c1f0890028
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)8d52e7ff1ccaac7dbf0232fdcb0168bd
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-He78)435853c50cec6666e13c237685053577
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
913 0 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-315
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Imaging and radiooncology
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-08-28
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2020-08-28
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-08-28
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2020-08-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-28
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-08-28
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-08-28
920 1 _ |0 I:(DE-He78)E040-20160331
|k E040
|l E040 Med. Physik in der Strahlentherapie
|x 0
920 1 _ |0 I:(DE-He78)E050-20160331
|k E050
|l E050 KKE Strahlentherapie
|x 1
920 1 _ |0 I:(DE-He78)E041-20160331
|k E041
|l E041 Med. Physik in der Radioonkologie
|x 2
920 1 _ |0 I:(DE-He78)E230-20160331
|k E230
|l E230 Medizinische Bildverarbeitung
|x 3
920 1 _ |0 I:(DE-He78)E055-20160331
|k E055
|l E055 KKE Molekulare Radioonkologie
|x 4
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E040-20160331
980 _ _ |a I:(DE-He78)E050-20160331
980 _ _ |a I:(DE-He78)E041-20160331
980 _ _ |a I:(DE-He78)E230-20160331
980 _ _ |a I:(DE-He78)E055-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21