Journal Article DKFZ-2021-00826

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Biologically consistent dose accumulation using daily patient imaging.

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2021
BioMed Central London

Radiation oncology 16(1), 65 () [10.1186/s13014-021-01789-3]
 GO

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: This work addresses a basic inconsistency in the way dose is accumulated in radiotherapy when predicting the biological effect based on the linear quadratic model (LQM). To overcome this inconsistency, we introduce and evaluate the concept of the total biological dose, bEQDd.Daily computed tomography imaging of nine patients treated for prostate carcinoma with intensity-modulated radiotherapy was used to compute the delivered deformed dose on the basis of deformable image registration (DIR). We compared conventional dose accumulation (DA) with the newly introduced bEQDd, a new method of accumulating biological dose that considers each fraction dose and tissue radiobiology. We investigated the impact of the applied fractionation scheme (conventional/hypofractionated), uncertainties induced by the DIR and by the assigned α/β-value.bEQDd was systematically higher than the conventionally accumulated dose with difference hot spots of 3.3-4.9 Gy detected in six out of nine patients in regions of high dose gradient in the bladder and rectum. For hypofractionation, differences are up to 8.4 Gy. The difference amplitude was found to be in a similar range to worst-case uncertainties induced by DIR and was higher than that induced by α/β.Using bEQDd for dose accumulation overcomes a potential systematic inaccuracy in biological effect prediction based on accumulated dose. Highest impact is found for serial-type late responding organs at risk in dose gradient regions and for hypofractionation. Although hot spot differences are in the order of several Gray, in dose-volume parameters there is little difference compared with using conventional or biological DA. However, when local dose information is used, e.g. dose surface maps, difference hot spots can potentially change outcomes of dose-response modelling and adaptive treatment strategies.

Keyword(s): Delivered dose ; Dose accumulation ; Image guidance ; Linear quadratic model ; Normal tissue response ; Radiobiology

Classification:

Note: #EA:E040#LA:E040#

Contributing Institute(s):
  1. E040 Med. Physik in der Strahlentherapie (E040)
  2. E050 KKE Strahlentherapie (E050)
  3. E041 Med. Physik in der Radioonkologie (E041)
  4. E230 Medizinische Bildverarbeitung (E230)
  5. E055 KKE Molekulare Radioonkologie (E055)
Research Program(s):
  1. 315 - Bildgebung und Radioonkologie (POF4-315) (POF4-315)

Appears in the scientific report 2021
Database coverage:
Medline ; Creative Commons Attribution CC BY (No Version) ; DOAJ ; Article Processing Charges ; Clarivate Analytics Master Journal List ; Current Contents - Clinical Medicine ; DOAJ Seal ; Ebsco Academic Search ; Essential Science Indicators ; Fees ; PubMed Central ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > E040
Public records
Publications database

 Record created 2021-04-08, last modified 2024-02-29



Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)