001     169883
005     20240229133659.0
024 7 _ |a 10.1016/j.jaad.2021.07.011
|2 doi
024 7 _ |a pmid:34280484
|2 pmid
024 7 _ |a 0190-9622
|2 ISSN
024 7 _ |a 1097-6787
|2 ISSN
024 7 _ |a altmetric:110001965
|2 altmetric
037 _ _ |a DKFZ-2021-01617
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Gaudy-Marqueste, Caroline
|b 0
245 _ _ |a Molecular characterization of fast-growing melanomas.
260 _ _ |a Amsterdam [u.a.]
|c 2022
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1643978664_5756
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Volume 86, Issue 2, February 2022, Pages 312-321
520 _ _ |a The rate of growth of primary melanoma is a robust predictor of aggressiveness, but the mutational profile of fast-growing melanomas (FGMM), and its potential to stratify patients at high risk of death, has not been comprehensively studied.To investigate the epidemiological, clinical and mutational profile of primary cutaneous melanomas with a thickness ≥ 1mm, stratified by rate of growth (ROG).Observational prospective study. Deep-targeted sequencing of 40 melanoma driver genes on formalin fixed, paraffin embedded primary melanoma samples. Comparison of FGMM (ROG >0.5mm/month) and non-FGMM (ROG≤0.5 mm/month).Two hundred patients were enrolled among which 70 were FGMM. The relapse free survival was lower in the FGMM group (p=0.014). FGMM had a higher number of predicted deleterious mutations within the 40 genes than non-FGMM (p=0.033). Ulceration (p=0.032), thickness (p=0.006), lower sun exposure (p=0.049), and FGFR2 mutations (p=0.037) were significantly associated with fast growth.Single-center study, cohort size, potential memory bias, number of investigated genes.Fast growth is linked to specific tumor biology and environmental factors. Ulceration, thickness and FGFR2 mutations associate with fast growth. Screening for FGFR2 mutations might provide an additional tool to better identify FGMM which are probably good candidates for adjuvant therapies.
536 _ _ |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312)
|0 G:(DE-HGF)POF4-312
|c POF4-312
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
650 _ 7 |a FGFR2 mutations
|2 Other
650 _ 7 |a Melanoma
|2 Other
650 _ 7 |a fast growth melanoma
|2 Other
650 _ 7 |a mutations of poor prognosis
|2 Other
700 1 _ |a Macagno, Nicolas
|b 1
700 1 _ |a Loundou, Anderson
|b 2
700 1 _ |a Pellegrino, Eric
|b 3
700 1 _ |a Ouafik, L'houcine
|b 4
700 1 _ |a Budden, Timothy
|b 5
700 1 _ |a Mundra, Piyushkumar
|b 6
700 1 _ |a Gremel, Gabriela
|b 7
700 1 _ |a Akhras, Victoria
|b 8
700 1 _ |a Lin, Lijing
|b 9
700 1 _ |a Cook, Martin
|b 10
700 1 _ |a Kumar, Rajiv
|0 P:(DE-He78)9a9af43c15771eaf3b2db8bb28a2829d
|b 11
|u dkfz
700 1 _ |a Grob, Jean-Jacques
|b 12
700 1 _ |a Nagore, Eduardo
|b 13
700 1 _ |a Marais, Richard
|b 14
700 1 _ |a Virós, Amaya
|b 15
773 _ _ |a 10.1016/j.jaad.2021.07.011
|g p. S0190962221021010
|0 PERI:(DE-600)2001404-1
|n 2
|p 312-321
|t Journal of the American Academy of Dermatology
|v 86
|y 2022
|x 0190-9622
909 C O |p VDB
|o oai:inrepo02.dkfz.de:169883
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 P:(DE-He78)9a9af43c15771eaf3b2db8bb28a2829d
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-312
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Funktionelle und strukturelle Genomforschung
|x 0
913 0 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-312
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Functional and structural genomics
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-02
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-16
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-16
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J AM ACAD DERMATOL : 2021
|d 2022-11-16
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b J AM ACAD DERMATOL : 2021
|d 2022-11-16
920 1 _ |0 I:(DE-He78)B070-20160331
|k B070
|l B070 Funktionelle Genomanalyse
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B070-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21