000170295 001__ 170295
000170295 005__ 20240229133711.0
000170295 0247_ $$2doi$$a10.1002/mp.15150
000170295 0247_ $$2pmid$$apmid:34407209
000170295 0247_ $$2ISSN$$a0094-2405
000170295 0247_ $$2ISSN$$a1522-8541
000170295 0247_ $$2ISSN$$a2473-4209
000170295 0247_ $$2altmetric$$aaltmetric:99437962
000170295 037__ $$aDKFZ-2021-01885
000170295 041__ $$aEnglish
000170295 082__ $$a610
000170295 1001_ $$aSpadea, Maria Francesca$$b0
000170295 245__ $$aDeep learning-based synthetic-CT generation in radiotherapy and PET: a review.
000170295 260__ $$aCollege Park, Md.$$bAAPM$$c2021
000170295 3367_ $$2DRIVER$$aarticle
000170295 3367_ $$2DataCite$$aOutput Types/Journal article
000170295 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1642420549_14848$$xReview Article
000170295 3367_ $$2BibTeX$$aARTICLE
000170295 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000170295 3367_ $$00$$2EndNote$$aJournal Article
000170295 500__ $$a#LA:E041# / 2021 Nov;48(11):6537-6566
000170295 520__ $$aRecently, deep learning (DL)-based methods for the generation of synthetic computed tomography (sCT) have received significant research attention as an alternative to classical ones. We present here a systematic review of these methods by grouping them into three categories, according to their clinical applications: I) to replace CT in magnetic resonance (MR)-based treatment planning, II) facilitate cone-beam computed tomography (CBCT)-based image-guided adaptive radiotherapy, and III) derive attenuation maps for the correction of positron emission tomography (PET). Appropriate database searching was performed on journal articles published between January 2014 and December 2020. The DL methods' key characteristics were extracted from each eligible study, and a comprehensive comparison among network architectures and metrics was reported. A detailed review of each category was given, highlighting essential contributions, identifying specific challenges, and summarising the achievements. Lastly, the statistics of all the cited works from various aspects were analysed, revealing the popularity and future trends and the potential of DL-based sCT generation. The current status of DL-based sCT generation was evaluated, assessing the clinical readiness of the presented methods.
000170295 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000170295 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
000170295 7001_ $$aMaspero, Matteo$$b1
000170295 7001_ $$aZaffino, Paolo$$b2
000170295 7001_ $$0P:(DE-He78)102624aca75cfe987c05343d5fdcf2fe$$aSeco, Joao$$b3$$eLast author$$udkfz
000170295 773__ $$0PERI:(DE-600)1466421-5$$a10.1002/mp.15150$$gp. mp.15150$$n11$$p6537-6566$$tMedical physics$$v48$$x2473-4209$$y2021
000170295 909CO $$ooai:inrepo02.dkfz.de:170295$$pVDB
000170295 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)102624aca75cfe987c05343d5fdcf2fe$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000170295 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000170295 9141_ $$y2021
000170295 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-02-02$$wger
000170295 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000170295 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-02-02
000170295 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000170295 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-02-02
000170295 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000170295 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2021-02-02
000170295 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000170295 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000170295 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMED PHYS : 2019$$d2021-02-02
000170295 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000170295 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-02
000170295 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-02
000170295 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-02
000170295 9201_ $$0I:(DE-He78)E041-20160331$$kE041$$lE041 Medizinische Physik in der Radioonkologie$$x0
000170295 980__ $$ajournal
000170295 980__ $$aVDB
000170295 980__ $$aI:(DE-He78)E041-20160331
000170295 980__ $$aUNRESTRICTED