TY - JOUR
AU - Shuai, Shimin
AU - PCAWGDrivers
AU - FunctionalInterpretationWorkingGroup
AU - Gallinger, Steven
AU - Stein, Lincoln
AU - PCAWGConsortium
TI - Combined burden and functional impact tests for cancer driver discovery using DriverPower.
JO - Nature Communications
VL - 11
IS - 1
SN - 2041-1723
CY - [London]
PB - Nature Publishing Group UK
M1 - DKFZ-2021-02568
SP - 734
PY - 2020
N1 - siehe Correction: DKFZ Autoren affiliiert im PCAWG Consortium: https://inrepo02.dkfz.de/record/212435 / https://doi.org/10.1038/s41467-022-32343-8
AB - The discovery of driver mutations is one of the key motivations for cancer genome sequencing. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2658 cancers across 38 tumour types, we describe DriverPower, a software package that uses mutational burden and functional impact evidence to identify driver mutations in coding and non-coding sites within cancer whole genomes. Using a total of 1373 genomic features derived from public sources, DriverPower's background mutation model explains up to 93
KW - Algorithms
KW - Genome, Human
KW - Genomics: methods
KW - Humans
KW - MEF2 Transcription Factors: genetics
KW - Mutation
KW - Mutation Rate
KW - Neoplasms: genetics
KW - Peptide Elongation Factor 1: genetics
KW - Receptors, G-Protein-Coupled: genetics
KW - Software
KW - Whole Genome Sequencing
KW - ADGRG6 protein, human (NLM Chemicals)
KW - EEF1A2 protein, human (NLM Chemicals)
KW - MEF2 Transcription Factors (NLM Chemicals)
KW - MEF2B protein, human (NLM Chemicals)
KW - Peptide Elongation Factor 1 (NLM Chemicals)
KW - Receptors, G-Protein-Coupled (NLM Chemicals)
LB - PUB:(DE-HGF)16
C6 - pmid:32024818
C2 - pmc:PMC7002750
DO - DOI:10.1038/s41467-019-13929-1
UR - https://inrepo02.dkfz.de/record/177481
ER -