001     177481
005     20240320154138.0
024 7 _ |a 10.1038/s41467-019-13929-1
|2 doi
024 7 _ |a pmid:32024818
|2 pmid
024 7 _ |a pmc:PMC7002750
|2 pmc
024 7 _ |a altmetric:75124889
|2 altmetric
037 _ _ |a DKFZ-2021-02568
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a Shuai, Shimin
|b 0
245 _ _ |a Combined burden and functional impact tests for cancer driver discovery using DriverPower.
260 _ _ |a [London]
|c 2020
|b Nature Publishing Group UK
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1710945647_32161
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a siehe Correction: DKFZ Autoren affiliiert im PCAWG Consortium: https://inrepo02.dkfz.de/record/212435 / https://doi.org/10.1038/s41467-022-32343-8
520 _ _ |a The discovery of driver mutations is one of the key motivations for cancer genome sequencing. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2658 cancers across 38 tumour types, we describe DriverPower, a software package that uses mutational burden and functional impact evidence to identify driver mutations in coding and non-coding sites within cancer whole genomes. Using a total of 1373 genomic features derived from public sources, DriverPower's background mutation model explains up to 93% of the regional variance in the mutation rate across multiple tumour types. By incorporating functional impact scores, we are able to further increase the accuracy of driver discovery. Testing across a collection of 2583 cancer genomes from the PCAWG project, DriverPower identifies 217 coding and 95 non-coding driver candidates. Comparing to six published methods used by the PCAWG Drivers and Functional Interpretation Working Group, DriverPower has the highest F1 score for both coding and non-coding driver discovery. This demonstrates that DriverPower is an effective framework for computational driver discovery.
536 _ _ |a 312 - Functional and structural genomics (POF3-312)
|0 G:(DE-HGF)POF3-312
|c POF3-312
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
650 _ 7 |a ADGRG6 protein, human
|2 NLM Chemicals
650 _ 7 |a EEF1A2 protein, human
|2 NLM Chemicals
650 _ 7 |a MEF2 Transcription Factors
|2 NLM Chemicals
650 _ 7 |a MEF2B protein, human
|2 NLM Chemicals
650 _ 7 |a Peptide Elongation Factor 1
|2 NLM Chemicals
650 _ 7 |a Receptors, G-Protein-Coupled
|2 NLM Chemicals
650 _ 2 |a Algorithms
|2 MeSH
650 _ 2 |a Genome, Human
|2 MeSH
650 _ 2 |a Genomics: methods
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a MEF2 Transcription Factors: genetics
|2 MeSH
650 _ 2 |a Mutation
|2 MeSH
650 _ 2 |a Mutation Rate
|2 MeSH
650 _ 2 |a Neoplasms: genetics
|2 MeSH
650 _ 2 |a Peptide Elongation Factor 1: genetics
|2 MeSH
650 _ 2 |a Receptors, G-Protein-Coupled: genetics
|2 MeSH
650 _ 2 |a Software
|2 MeSH
650 _ 2 |a Whole Genome Sequencing
|2 MeSH
700 1 _ |a PCAWGDrivers
|b 1
700 1 _ |a FunctionalInterpretationWorkingGroup
|b 2
700 1 _ |a Gallinger, Steven
|b 3
700 1 _ |a Stein, Lincoln
|b 4
700 1 _ |a PCAWGConsortium
|b 5
773 _ _ |a 10.1038/s41467-019-13929-1
|g Vol. 11, no. 1, p. 734
|0 PERI:(DE-600)2553671-0
|n 1
|p 734
|t Nature Communications
|v 11
|y 2020
|x 2041-1723
909 C O |p VDB
|o oai:inrepo02.dkfz.de:177481
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-312
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Functional and structural genomics
|x 0
914 1 _ |y 2020
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT COMMUN : 2019
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-02-02
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2021-02-02
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-02
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b NAT COMMUN : 2019
|d 2021-02-02
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-02-02
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-02-02
920 1 _ |0 I:(DE-He78)B080-20160331
|k B080
|l Theoretische Bioinformatik
|x 0
920 1 _ |0 I:(DE-He78)B330-20160331
|k B330
|l Angewandte Bioinformatik
|x 1
920 1 _ |0 I:(DE-He78)B370-20160331
|k B370
|l Epigenomik
|x 2
920 1 _ |0 I:(DE-He78)W610-20160331
|k W610
|l Core Facility Omics IT
|x 3
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 4
920 1 _ |0 I:(DE-He78)B060-20160331
|k B060
|l B060 Molekulare Genetik
|x 5
920 1 _ |0 I:(DE-He78)B062-20160331
|k B062
|l B062 Pädiatrische Neuroonkologie
|x 6
920 1 _ |0 I:(DE-He78)B360-20160331
|k B360
|l Pädiatrische Gliomforschung
|x 7
920 1 _ |0 I:(DE-He78)B066-20160331
|k B066
|l B066 Chromatin-Netzwerke
|x 8
920 1 _ |0 I:(DE-He78)B240-20160331
|k B240
|l Bioinformatik und Omics Data Analytics
|x 9
920 1 _ |0 I:(DE-He78)BE01-20160331
|k BE01
|l DKTK Koordinierungsstelle Berlin
|x 10
920 1 _ |0 I:(DE-He78)B260-20160331
|k B260
|l B260 Bioinformatik der Genomik und Systemgenetik
|x 11
920 1 _ |0 I:(DE-He78)B063-20160331
|k B063
|l B063 Krebsgenomforschung
|x 12
920 1 _ |0 I:(DE-He78)W190-20160331
|k W190
|l Hochdurchsatz-Sequenzierung
|x 13
920 1 _ |0 I:(DE-He78)B087-20160331
|k B087
|l B087 Neuroblastom Genomik
|x 14
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B080-20160331
980 _ _ |a I:(DE-He78)B330-20160331
980 _ _ |a I:(DE-He78)B370-20160331
980 _ _ |a I:(DE-He78)W610-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a I:(DE-He78)B060-20160331
980 _ _ |a I:(DE-He78)B062-20160331
980 _ _ |a I:(DE-He78)B360-20160331
980 _ _ |a I:(DE-He78)B066-20160331
980 _ _ |a I:(DE-He78)B240-20160331
980 _ _ |a I:(DE-He78)BE01-20160331
980 _ _ |a I:(DE-He78)B260-20160331
980 _ _ |a I:(DE-He78)B063-20160331
980 _ _ |a I:(DE-He78)W190-20160331
980 _ _ |a I:(DE-He78)B087-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21