Home > Publications database > Combined burden and functional impact tests for cancer driver discovery using DriverPower. > print |
001 | 177481 | ||
005 | 20240320154138.0 | ||
024 | 7 | _ | |a 10.1038/s41467-019-13929-1 |2 doi |
024 | 7 | _ | |a pmid:32024818 |2 pmid |
024 | 7 | _ | |a pmc:PMC7002750 |2 pmc |
024 | 7 | _ | |a altmetric:75124889 |2 altmetric |
037 | _ | _ | |a DKFZ-2021-02568 |
041 | _ | _ | |a English |
082 | _ | _ | |a 500 |
100 | 1 | _ | |a Shuai, Shimin |b 0 |
245 | _ | _ | |a Combined burden and functional impact tests for cancer driver discovery using DriverPower. |
260 | _ | _ | |a [London] |c 2020 |b Nature Publishing Group UK |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1710945647_32161 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a siehe Correction: DKFZ Autoren affiliiert im PCAWG Consortium: https://inrepo02.dkfz.de/record/212435 / https://doi.org/10.1038/s41467-022-32343-8 |
520 | _ | _ | |a The discovery of driver mutations is one of the key motivations for cancer genome sequencing. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2658 cancers across 38 tumour types, we describe DriverPower, a software package that uses mutational burden and functional impact evidence to identify driver mutations in coding and non-coding sites within cancer whole genomes. Using a total of 1373 genomic features derived from public sources, DriverPower's background mutation model explains up to 93% of the regional variance in the mutation rate across multiple tumour types. By incorporating functional impact scores, we are able to further increase the accuracy of driver discovery. Testing across a collection of 2583 cancer genomes from the PCAWG project, DriverPower identifies 217 coding and 95 non-coding driver candidates. Comparing to six published methods used by the PCAWG Drivers and Functional Interpretation Working Group, DriverPower has the highest F1 score for both coding and non-coding driver discovery. This demonstrates that DriverPower is an effective framework for computational driver discovery. |
536 | _ | _ | |a 312 - Functional and structural genomics (POF3-312) |0 G:(DE-HGF)POF3-312 |c POF3-312 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de |
650 | _ | 7 | |a ADGRG6 protein, human |2 NLM Chemicals |
650 | _ | 7 | |a EEF1A2 protein, human |2 NLM Chemicals |
650 | _ | 7 | |a MEF2 Transcription Factors |2 NLM Chemicals |
650 | _ | 7 | |a MEF2B protein, human |2 NLM Chemicals |
650 | _ | 7 | |a Peptide Elongation Factor 1 |2 NLM Chemicals |
650 | _ | 7 | |a Receptors, G-Protein-Coupled |2 NLM Chemicals |
650 | _ | 2 | |a Algorithms |2 MeSH |
650 | _ | 2 | |a Genome, Human |2 MeSH |
650 | _ | 2 | |a Genomics: methods |2 MeSH |
650 | _ | 2 | |a Humans |2 MeSH |
650 | _ | 2 | |a MEF2 Transcription Factors: genetics |2 MeSH |
650 | _ | 2 | |a Mutation |2 MeSH |
650 | _ | 2 | |a Mutation Rate |2 MeSH |
650 | _ | 2 | |a Neoplasms: genetics |2 MeSH |
650 | _ | 2 | |a Peptide Elongation Factor 1: genetics |2 MeSH |
650 | _ | 2 | |a Receptors, G-Protein-Coupled: genetics |2 MeSH |
650 | _ | 2 | |a Software |2 MeSH |
650 | _ | 2 | |a Whole Genome Sequencing |2 MeSH |
700 | 1 | _ | |a PCAWGDrivers |b 1 |
700 | 1 | _ | |a FunctionalInterpretationWorkingGroup |b 2 |
700 | 1 | _ | |a Gallinger, Steven |b 3 |
700 | 1 | _ | |a Stein, Lincoln |b 4 |
700 | 1 | _ | |a PCAWGConsortium |b 5 |
773 | _ | _ | |a 10.1038/s41467-019-13929-1 |g Vol. 11, no. 1, p. 734 |0 PERI:(DE-600)2553671-0 |n 1 |p 734 |t Nature Communications |v 11 |y 2020 |x 2041-1723 |
909 | C | O | |p VDB |o oai:inrepo02.dkfz.de:177481 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF3-310 |0 G:(DE-HGF)POF3-312 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-300 |4 G:(DE-HGF)POF |v Functional and structural genomics |x 0 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NAT COMMUN : 2019 |d 2021-02-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-02-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-02-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2021-02-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2021-02-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2021-02-02 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Peer review |d 2021-02-02 |
915 | _ | _ | |a Creative Commons Attribution CC BY (No Version) |0 LIC:(DE-HGF)CCBYNV |2 V:(DE-HGF) |b DOAJ |d 2021-02-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-02-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2021-02-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-02-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2021-02-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-02-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |d 2021-02-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2021-02-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2021-02-02 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-02-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-02-02 |
915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b NAT COMMUN : 2019 |d 2021-02-02 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2021-02-02 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2021-02-02 |
920 | 1 | _ | |0 I:(DE-He78)B080-20160331 |k B080 |l Theoretische Bioinformatik |x 0 |
920 | 1 | _ | |0 I:(DE-He78)B330-20160331 |k B330 |l Angewandte Bioinformatik |x 1 |
920 | 1 | _ | |0 I:(DE-He78)B370-20160331 |k B370 |l Epigenomik |x 2 |
920 | 1 | _ | |0 I:(DE-He78)W610-20160331 |k W610 |l Core Facility Omics IT |x 3 |
920 | 1 | _ | |0 I:(DE-He78)HD01-20160331 |k HD01 |l DKTK HD zentral |x 4 |
920 | 1 | _ | |0 I:(DE-He78)B060-20160331 |k B060 |l B060 Molekulare Genetik |x 5 |
920 | 1 | _ | |0 I:(DE-He78)B062-20160331 |k B062 |l B062 Pädiatrische Neuroonkologie |x 6 |
920 | 1 | _ | |0 I:(DE-He78)B360-20160331 |k B360 |l Pädiatrische Gliomforschung |x 7 |
920 | 1 | _ | |0 I:(DE-He78)B066-20160331 |k B066 |l B066 Chromatin-Netzwerke |x 8 |
920 | 1 | _ | |0 I:(DE-He78)B240-20160331 |k B240 |l Bioinformatik und Omics Data Analytics |x 9 |
920 | 1 | _ | |0 I:(DE-He78)BE01-20160331 |k BE01 |l DKTK Koordinierungsstelle Berlin |x 10 |
920 | 1 | _ | |0 I:(DE-He78)B260-20160331 |k B260 |l B260 Bioinformatik der Genomik und Systemgenetik |x 11 |
920 | 1 | _ | |0 I:(DE-He78)B063-20160331 |k B063 |l B063 Krebsgenomforschung |x 12 |
920 | 1 | _ | |0 I:(DE-He78)W190-20160331 |k W190 |l Hochdurchsatz-Sequenzierung |x 13 |
920 | 1 | _ | |0 I:(DE-He78)B087-20160331 |k B087 |l B087 Neuroblastom Genomik |x 14 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)B080-20160331 |
980 | _ | _ | |a I:(DE-He78)B330-20160331 |
980 | _ | _ | |a I:(DE-He78)B370-20160331 |
980 | _ | _ | |a I:(DE-He78)W610-20160331 |
980 | _ | _ | |a I:(DE-He78)HD01-20160331 |
980 | _ | _ | |a I:(DE-He78)B060-20160331 |
980 | _ | _ | |a I:(DE-He78)B062-20160331 |
980 | _ | _ | |a I:(DE-He78)B360-20160331 |
980 | _ | _ | |a I:(DE-He78)B066-20160331 |
980 | _ | _ | |a I:(DE-He78)B240-20160331 |
980 | _ | _ | |a I:(DE-He78)BE01-20160331 |
980 | _ | _ | |a I:(DE-He78)B260-20160331 |
980 | _ | _ | |a I:(DE-He78)B063-20160331 |
980 | _ | _ | |a I:(DE-He78)W190-20160331 |
980 | _ | _ | |a I:(DE-He78)B087-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|