Journal Article DKFZ-2022-00007

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Radiation induced contrast enhancement after proton beam therapy in patients with low grade glioma - how safe are protons?

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2022
Elsevier Science Amsterdam [u.a.]

Radiotherapy and oncology 167, 211-218 () [10.1016/j.radonc.2021.12.035]
 GO

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: The optimal treatment strategy for low-grade glioma (LGG) is still a matter of controversy. Considering that the prognosis is typically favorable, the prevention of late sequelae is of particular importance. Proton beam therapy (PRT) has the potential to further reduce the burden of treatment related side effects. We set out to evaluate the clinical outcome of proton irradiation with a particular focus on morphologic features on magnetic resonance imaging (MRI).We assessed prospectively 110 patients who received radiotherapy with protons for histologically proven LGG. Clinical and radiological information were analyzed resulting in more than 1200 available MRI examinations with a median follow-up of 39 months. Newly diagnosed contrast-enhancing lesions on MRI were delineated and correlated with parameters of the corresponding treatment plan. A voxel-based dose-matched paired analysis of the linear energy transfer (LET) inside vs outside lesions was performed.Proton beam irradiation of patients with low-grade glioma results in overall survival (OS) of 90 % after seven years. Median progression free survival had not yet been reached with surviving fraction of 54 % after seven years. The incidence of temporary or clinically silent radiation induced contrast enhancement was significantly higher than previously assumed, however, symptomatic radiation necrosis was only detected in one patient. These radiation-induced contrast-enhancing lesions were almost exclusively seen at the distal beam end of the proton beam. In 22 out of 23 patients, the average LET of voxels inside contrast-enhancing lesions was significantly increased, compared to dose-matched voxels outside the lesions.Symptomatic radiation necrosis following PRT was as rare as conventional photon-based treatment series suggest. However, the increased incidence of asymptomatic radiation-induced brain injuries with an increased average LET observed in this cohort provides strong clinical evidence to support the hypothesis that the relative biological effectiveness of protons is variable and different to the fixed factor of 1.1 currently used worldwide.

Keyword(s): Low-grade glioma ; Proton beam therapy ; Radiation necrosis ; Radiation-induced brain injury ; Variable RBE

Classification:

Note: #EA:E050# / Volume 167, February 2022, Pages 211-218

Contributing Institute(s):
  1. E050 KKE Strahlentherapie (E050)
  2. DKTK HD zentral (HD01)
Research Program(s):
  1. 315 - Bildgebung und Radioonkologie (POF4-315) (POF4-315)

Appears in the scientific report 2021
Database coverage:
Medline ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Clinical Medicine ; Ebsco Academic Search ; Essential Science Indicators ; IF >= 5 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Public records
Publications database

 Record created 2022-01-02, last modified 2024-02-29



Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)