| Home > Publications database > Respiration induced B 1 + changes and their impact on universal and tailored 3D kT-point parallel transmission pulses for 7T cardiac imaging. |
| Journal Article | DKFZ-2022-00268 |
; ;
2022
Wiley-Liss
New York, NY [u.a.]
This record in other databases:

Please use a persistent id in citations: doi:10.1002/mrm.29183
Abstract: Human heart imaging at ultra-high fields is highly challenging because of respiratory motion-induced artefacts and spatially heterogeneous B 1 + profiles. This work demonstrates that respiration resolved 3D B 1 + -maps can be used with a dedicated tailored and universal parallel transmission (pTx) pulse design to compensate respiration related B 1 + changes in subjects performing shallow and deep breathing (SB/DB).Three-dimensional (3D) B 1 + -maps of the thorax were acquired in 31 subjects under SB and in 15 subjects under SB and DB. Different universal and tailored non-selective pTx pulses were designed from non-respiration resolved (NRR) and respiration resolved (RR) reconstructions of the SB/DB B 1 + -maps. The performance of all pulses was tested with RR-SB/DB B 1 + -maps. Respiration-robust tailored and universal pulses were applied in vivo in 5 subjects at 7T in 3D gradient-echo free-breathing scans.All optimized pTx pulses performed well for SB. For DB, however, only the universal and the tailored respiration-robust pulses achieved homogeneous flip angles (FAs) in all subjects and across all respiration states, whereas the tailored respiration-specific pulses resulted in a higher FA variation. The respiration-robust universal pulse resulted in an average coefficient of variation in the FA maps of 12.6% compared to 8.2% achieved by tailored respiration-robust pulses. In vivo measurements at 7T demonstrate the benefits of using respiration-robust pulses for DB.Universal and tailored respiration-robust pTx pulses based on RR B 1 + -maps are highly preferred to achieve 3D heart FA homogenization at 7T when subjects perform DB, whereas universal and tailored pulses based on NRR B 1 + -maps are sufficient when subjects perform SB.
Keyword(s): 7 Tesla ; body MRI ; heart ; parallel transmission ; respiration robust ; universal pulse
|
The record appears in these collections: |