000179418 001__ 179418
000179418 005__ 20240229145543.0
000179418 0247_ $$2doi$$a10.1016/j.pacs.2022.100341
000179418 0247_ $$2pmid$$apmid:35371919
000179418 0247_ $$2pmc$$apmc:PMC8968659
000179418 0247_ $$2altmetric$$aaltmetric:125481402
000179418 037__ $$aDKFZ-2022-00660
000179418 041__ $$aEnglish
000179418 082__ $$a530
000179418 1001_ $$0P:(DE-He78)9d0e93f03c73f265ef93b2217b023d60$$aSchellenberg, Melanie$$b0$$eFirst author$$udkfz
000179418 245__ $$aSemantic segmentation of multispectral photoacoustic images using deep learning.
000179418 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2022
000179418 3367_ $$2DRIVER$$aarticle
000179418 3367_ $$2DataCite$$aOutput Types/Journal article
000179418 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1649244534_24918
000179418 3367_ $$2BibTeX$$aARTICLE
000179418 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000179418 3367_ $$00$$2EndNote$$aJournal Article
000179418 500__ $$a#EA:E130#LA:E130#
000179418 520__ $$aPhotoacoustic (PA) imaging has the potential to revolutionize functional medical imaging in healthcare due to the valuable information on tissue physiology contained in multispectral photoacoustic measurements. Clinical translation of the technology requires conversion of the high-dimensional acquired data into clinically relevant and interpretable information. In this work, we present a deep learning-based approach to semantic segmentation of multispectral photoacoustic images to facilitate image interpretability. Manually annotated photoacoustic and ultrasound imaging data are used as reference and enable the training of a deep learning-based segmentation algorithm in a supervised manner. Based on a validation study with experimentally acquired data from 16 healthy human volunteers, we show that automatic tissue segmentation can be used to create powerful analyses and visualizations of multispectral photoacoustic images. Due to the intuitive representation of high-dimensional information, such a preprocessing algorithm could be a valuable means to facilitate the clinical translation of photoacoustic imaging.
000179418 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000179418 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000179418 650_7 $$2Other$$aDeep learning
000179418 650_7 $$2Other$$aMedical image segmentation
000179418 650_7 $$2Other$$aMultispectral imaging
000179418 650_7 $$2Other$$aOptoacoustics
000179418 650_7 $$2Other$$aPhotoacoustics
000179418 7001_ $$0P:(DE-He78)84acbc6406dd178828f87a8150d40951$$aDreher, Kris K$$b1$$udkfz
000179418 7001_ $$0P:(DE-He78)1c47bf7bdef42ec57b194723ccfb2946$$aHolzwarth, Niklas$$b2$$udkfz
000179418 7001_ $$0P:(DE-He78)7ea9af59d03ec7deb982a0e0562358fa$$aIsensee, Fabian$$b3$$udkfz
000179418 7001_ $$0P:(DE-He78)97e904f47dab556a77c0149cd0002591$$aReinke, Annika$$b4$$udkfz
000179418 7001_ $$0P:(DE-He78)0d054b6843ace36d1c965b6cb938d1c9$$aSchreck, Nicholas$$b5$$udkfz
000179418 7001_ $$0P:(DE-He78)a83df473f58a6a8ef43263ec9783ecf0$$aSeitel, Alexander$$b6$$udkfz
000179418 7001_ $$0P:(DE-He78)26651d9aa10255ad4f35610a56aa91e8$$aTizabi, Minu D$$b7$$udkfz
000179418 7001_ $$0P:(DE-He78)26a1176cd8450660333a012075050072$$aMaier-Hein, Lena$$b8$$udkfz
000179418 7001_ $$0P:(DE-He78)fd657bfbb3c4757ac029bb6b56ab9b71$$aGröhl, Janek$$b9$$eLast author
000179418 773__ $$0PERI:(DE-600)2716706-9$$a10.1016/j.pacs.2022.100341$$gVol. 26, p. 100341 -$$p100341$$tPhotoacoustics$$v26$$x2213-5979$$y2022
000179418 909CO $$ooai:inrepo02.dkfz.de:179418$$pVDB
000179418 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)9d0e93f03c73f265ef93b2217b023d60$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000179418 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)84acbc6406dd178828f87a8150d40951$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000179418 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)1c47bf7bdef42ec57b194723ccfb2946$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000179418 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)7ea9af59d03ec7deb982a0e0562358fa$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000179418 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)97e904f47dab556a77c0149cd0002591$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000179418 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)0d054b6843ace36d1c965b6cb938d1c9$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000179418 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)a83df473f58a6a8ef43263ec9783ecf0$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000179418 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)26651d9aa10255ad4f35610a56aa91e8$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000179418 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)26a1176cd8450660333a012075050072$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ
000179418 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)fd657bfbb3c4757ac029bb6b56ab9b71$$aDeutsches Krebsforschungszentrum$$b9$$kDKFZ
000179418 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000179418 9141_ $$y2022
000179418 915__ $$0LIC:(DE-HGF)CCBYNCNDNV$$2V:(DE-HGF)$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND (No Version)$$bDOAJ$$d2021-01-31
000179418 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-31
000179418 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-31
000179418 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-01-31
000179418 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-01-31
000179418 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHOTOACOUSTICS : 2021$$d2022-11-23
000179418 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-23
000179418 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-23
000179418 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-26T13:10:29Z
000179418 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-26T13:10:29Z
000179418 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2021-01-26T13:10:29Z
000179418 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-23
000179418 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-23
000179418 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-23
000179418 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-23
000179418 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPHOTOACOUSTICS : 2021$$d2022-11-23
000179418 9202_ $$0I:(DE-He78)E130-20160331$$kE130$$lE130 Intelligente Medizinische Systeme$$x0
000179418 9201_ $$0I:(DE-He78)E130-20160331$$kE130$$lE130 Intelligente Medizinische Systeme$$x0
000179418 9201_ $$0I:(DE-He78)E230-20160331$$kE230$$lE230 Medizinische Bildverarbeitung$$x1
000179418 9201_ $$0I:(DE-He78)C060-20160331$$kC060$$lC060 Biostatistik$$x2
000179418 9200_ $$0I:(DE-He78)E130-20160331$$kE130$$lE130 Intelligente Medizinische Systeme$$x0
000179418 980__ $$ajournal
000179418 980__ $$aVDB
000179418 980__ $$aI:(DE-He78)E130-20160331
000179418 980__ $$aI:(DE-He78)E230-20160331
000179418 980__ $$aI:(DE-He78)C060-20160331
000179418 980__ $$aUNRESTRICTED