001     179418
005     20240229145543.0
024 7 _ |a 10.1016/j.pacs.2022.100341
|2 doi
024 7 _ |a pmid:35371919
|2 pmid
024 7 _ |a pmc:PMC8968659
|2 pmc
024 7 _ |a altmetric:125481402
|2 altmetric
037 _ _ |a DKFZ-2022-00660
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Schellenberg, Melanie
|0 P:(DE-He78)9d0e93f03c73f265ef93b2217b023d60
|b 0
|e First author
|u dkfz
245 _ _ |a Semantic segmentation of multispectral photoacoustic images using deep learning.
260 _ _ |a Amsterdam ˜[u.a.]œ
|c 2022
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1649244534_24918
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:E130#LA:E130#
520 _ _ |a Photoacoustic (PA) imaging has the potential to revolutionize functional medical imaging in healthcare due to the valuable information on tissue physiology contained in multispectral photoacoustic measurements. Clinical translation of the technology requires conversion of the high-dimensional acquired data into clinically relevant and interpretable information. In this work, we present a deep learning-based approach to semantic segmentation of multispectral photoacoustic images to facilitate image interpretability. Manually annotated photoacoustic and ultrasound imaging data are used as reference and enable the training of a deep learning-based segmentation algorithm in a supervised manner. Based on a validation study with experimentally acquired data from 16 healthy human volunteers, we show that automatic tissue segmentation can be used to create powerful analyses and visualizations of multispectral photoacoustic images. Due to the intuitive representation of high-dimensional information, such a preprocessing algorithm could be a valuable means to facilitate the clinical translation of photoacoustic imaging.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Deep learning
|2 Other
650 _ 7 |a Medical image segmentation
|2 Other
650 _ 7 |a Multispectral imaging
|2 Other
650 _ 7 |a Optoacoustics
|2 Other
650 _ 7 |a Photoacoustics
|2 Other
700 1 _ |a Dreher, Kris K
|0 P:(DE-He78)84acbc6406dd178828f87a8150d40951
|b 1
|u dkfz
700 1 _ |a Holzwarth, Niklas
|0 P:(DE-He78)1c47bf7bdef42ec57b194723ccfb2946
|b 2
|u dkfz
700 1 _ |a Isensee, Fabian
|0 P:(DE-He78)7ea9af59d03ec7deb982a0e0562358fa
|b 3
|u dkfz
700 1 _ |a Reinke, Annika
|0 P:(DE-He78)97e904f47dab556a77c0149cd0002591
|b 4
|u dkfz
700 1 _ |a Schreck, Nicholas
|0 P:(DE-He78)0d054b6843ace36d1c965b6cb938d1c9
|b 5
|u dkfz
700 1 _ |a Seitel, Alexander
|0 P:(DE-He78)a83df473f58a6a8ef43263ec9783ecf0
|b 6
|u dkfz
700 1 _ |a Tizabi, Minu D
|0 P:(DE-He78)26651d9aa10255ad4f35610a56aa91e8
|b 7
|u dkfz
700 1 _ |a Maier-Hein, Lena
|0 P:(DE-He78)26a1176cd8450660333a012075050072
|b 8
|u dkfz
700 1 _ |a Gröhl, Janek
|0 P:(DE-He78)fd657bfbb3c4757ac029bb6b56ab9b71
|b 9
|e Last author
773 _ _ |a 10.1016/j.pacs.2022.100341
|g Vol. 26, p. 100341 -
|0 PERI:(DE-600)2716706-9
|p 100341
|t Photoacoustics
|v 26
|y 2022
|x 2213-5979
909 C O |o oai:inrepo02.dkfz.de:179418
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)9d0e93f03c73f265ef93b2217b023d60
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)84acbc6406dd178828f87a8150d40951
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)1c47bf7bdef42ec57b194723ccfb2946
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)7ea9af59d03ec7deb982a0e0562358fa
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)97e904f47dab556a77c0149cd0002591
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)0d054b6843ace36d1c965b6cb938d1c9
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)a83df473f58a6a8ef43263ec9783ecf0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)26651d9aa10255ad4f35610a56aa91e8
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)26a1176cd8450660333a012075050072
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)fd657bfbb3c4757ac029bb6b56ab9b71
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND (No Version)
|0 LIC:(DE-HGF)CCBYNCNDNV
|2 V:(DE-HGF)
|b DOAJ
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-31
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-31
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-01-31
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-01-31
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHOTOACOUSTICS : 2021
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-01-26T13:10:29Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-01-26T13:10:29Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2021-01-26T13:10:29Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-23
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b PHOTOACOUSTICS : 2021
|d 2022-11-23
920 2 _ |0 I:(DE-He78)E130-20160331
|k E130
|l E130 Intelligente Medizinische Systeme
|x 0
920 1 _ |0 I:(DE-He78)E130-20160331
|k E130
|l E130 Intelligente Medizinische Systeme
|x 0
920 1 _ |0 I:(DE-He78)E230-20160331
|k E230
|l E230 Medizinische Bildverarbeitung
|x 1
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 2
920 0 _ |0 I:(DE-He78)E130-20160331
|k E130
|l E130 Intelligente Medizinische Systeme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E130-20160331
980 _ _ |a I:(DE-He78)E230-20160331
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21