Home > Publications database > Semantic segmentation of multispectral photoacoustic images using deep learning. > print |
001 | 179418 | ||
005 | 20240229145543.0 | ||
024 | 7 | _ | |a 10.1016/j.pacs.2022.100341 |2 doi |
024 | 7 | _ | |a pmid:35371919 |2 pmid |
024 | 7 | _ | |a pmc:PMC8968659 |2 pmc |
024 | 7 | _ | |a altmetric:125481402 |2 altmetric |
037 | _ | _ | |a DKFZ-2022-00660 |
041 | _ | _ | |a English |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Schellenberg, Melanie |0 P:(DE-He78)9d0e93f03c73f265ef93b2217b023d60 |b 0 |e First author |u dkfz |
245 | _ | _ | |a Semantic segmentation of multispectral photoacoustic images using deep learning. |
260 | _ | _ | |a Amsterdam [u.a.] |c 2022 |b Elsevier |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1649244534_24918 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a #EA:E130#LA:E130# |
520 | _ | _ | |a Photoacoustic (PA) imaging has the potential to revolutionize functional medical imaging in healthcare due to the valuable information on tissue physiology contained in multispectral photoacoustic measurements. Clinical translation of the technology requires conversion of the high-dimensional acquired data into clinically relevant and interpretable information. In this work, we present a deep learning-based approach to semantic segmentation of multispectral photoacoustic images to facilitate image interpretability. Manually annotated photoacoustic and ultrasound imaging data are used as reference and enable the training of a deep learning-based segmentation algorithm in a supervised manner. Based on a validation study with experimentally acquired data from 16 healthy human volunteers, we show that automatic tissue segmentation can be used to create powerful analyses and visualizations of multispectral photoacoustic images. Due to the intuitive representation of high-dimensional information, such a preprocessing algorithm could be a valuable means to facilitate the clinical translation of photoacoustic imaging. |
536 | _ | _ | |a 315 - Bildgebung und Radioonkologie (POF4-315) |0 G:(DE-HGF)POF4-315 |c POF4-315 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de |
650 | _ | 7 | |a Deep learning |2 Other |
650 | _ | 7 | |a Medical image segmentation |2 Other |
650 | _ | 7 | |a Multispectral imaging |2 Other |
650 | _ | 7 | |a Optoacoustics |2 Other |
650 | _ | 7 | |a Photoacoustics |2 Other |
700 | 1 | _ | |a Dreher, Kris K |0 P:(DE-He78)84acbc6406dd178828f87a8150d40951 |b 1 |u dkfz |
700 | 1 | _ | |a Holzwarth, Niklas |0 P:(DE-He78)1c47bf7bdef42ec57b194723ccfb2946 |b 2 |u dkfz |
700 | 1 | _ | |a Isensee, Fabian |0 P:(DE-He78)7ea9af59d03ec7deb982a0e0562358fa |b 3 |u dkfz |
700 | 1 | _ | |a Reinke, Annika |0 P:(DE-He78)97e904f47dab556a77c0149cd0002591 |b 4 |u dkfz |
700 | 1 | _ | |a Schreck, Nicholas |0 P:(DE-He78)0d054b6843ace36d1c965b6cb938d1c9 |b 5 |u dkfz |
700 | 1 | _ | |a Seitel, Alexander |0 P:(DE-He78)a83df473f58a6a8ef43263ec9783ecf0 |b 6 |u dkfz |
700 | 1 | _ | |a Tizabi, Minu D |0 P:(DE-He78)26651d9aa10255ad4f35610a56aa91e8 |b 7 |u dkfz |
700 | 1 | _ | |a Maier-Hein, Lena |0 P:(DE-He78)26a1176cd8450660333a012075050072 |b 8 |u dkfz |
700 | 1 | _ | |a Gröhl, Janek |0 P:(DE-He78)fd657bfbb3c4757ac029bb6b56ab9b71 |b 9 |e Last author |
773 | _ | _ | |a 10.1016/j.pacs.2022.100341 |g Vol. 26, p. 100341 - |0 PERI:(DE-600)2716706-9 |p 100341 |t Photoacoustics |v 26 |y 2022 |x 2213-5979 |
909 | C | O | |o oai:inrepo02.dkfz.de:179418 |p VDB |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 0 |6 P:(DE-He78)9d0e93f03c73f265ef93b2217b023d60 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 1 |6 P:(DE-He78)84acbc6406dd178828f87a8150d40951 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 2 |6 P:(DE-He78)1c47bf7bdef42ec57b194723ccfb2946 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 3 |6 P:(DE-He78)7ea9af59d03ec7deb982a0e0562358fa |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 4 |6 P:(DE-He78)97e904f47dab556a77c0149cd0002591 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 5 |6 P:(DE-He78)0d054b6843ace36d1c965b6cb938d1c9 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 6 |6 P:(DE-He78)a83df473f58a6a8ef43263ec9783ecf0 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 7 |6 P:(DE-He78)26651d9aa10255ad4f35610a56aa91e8 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 8 |6 P:(DE-He78)26a1176cd8450660333a012075050072 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 9 |6 P:(DE-He78)fd657bfbb3c4757ac029bb6b56ab9b71 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-315 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Bildgebung und Radioonkologie |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND (No Version) |0 LIC:(DE-HGF)CCBYNCNDNV |2 V:(DE-HGF) |b DOAJ |d 2021-01-31 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-31 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-31 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2021-01-31 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2021-01-31 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHOTOACOUSTICS : 2021 |d 2022-11-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2021-01-26T13:10:29Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2021-01-26T13:10:29Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Peer review |d 2021-01-26T13:10:29Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2022-11-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2022-11-23 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b PHOTOACOUSTICS : 2021 |d 2022-11-23 |
920 | 2 | _ | |0 I:(DE-He78)E130-20160331 |k E130 |l E130 Intelligente Medizinische Systeme |x 0 |
920 | 1 | _ | |0 I:(DE-He78)E130-20160331 |k E130 |l E130 Intelligente Medizinische Systeme |x 0 |
920 | 1 | _ | |0 I:(DE-He78)E230-20160331 |k E230 |l E230 Medizinische Bildverarbeitung |x 1 |
920 | 1 | _ | |0 I:(DE-He78)C060-20160331 |k C060 |l C060 Biostatistik |x 2 |
920 | 0 | _ | |0 I:(DE-He78)E130-20160331 |k E130 |l E130 Intelligente Medizinische Systeme |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)E130-20160331 |
980 | _ | _ | |a I:(DE-He78)E230-20160331 |
980 | _ | _ | |a I:(DE-He78)C060-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|