Home > Publications database > Including Measures of Chronic Kidney Disease to Improve Cardiovascular Risk Prediction by SCORE2 and SCORE2-OP. > print |
001 | 181232 | ||
005 | 20240229145643.0 | ||
024 | 7 | _ | |a 10.1093/eurjpc/zwac176 |2 doi |
024 | 7 | _ | |a pmid:35972749 |2 pmid |
024 | 7 | _ | |a 2047-4873 |2 ISSN |
024 | 7 | _ | |a 2047-4881 |2 ISSN |
024 | 7 | _ | |a altmetric:134344889 |2 altmetric |
037 | _ | _ | |a DKFZ-2022-01878 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Matsushita, Kunihiro |0 0000-0002-7179-718X |b 0 |
245 | _ | _ | |a Including Measures of Chronic Kidney Disease to Improve Cardiovascular Risk Prediction by SCORE2 and SCORE2-OP. |
260 | _ | _ | |a London [u.a.] |c 2023 |b Sage Publ. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1673519893_15371 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a 2023 Jan 11;30(1):8-16 |
520 | _ | _ | |a The 2021 ESC guideline on cardiovascular disease (CVD) prevention categorizes moderate and severe chronic kidney disease (CKD) as high and very-high CVD risk status regardless of other factors like age and does not include estimated glomerular filtration rate (eGFR) and albuminuria in its algorithms, SCORE2 and SCORE2-OP, to predict CVD risk. We developed and validated an 'Add-on' to incorporate CKD measures into these algorithms, using a validated approach.In 3,054,840 participants from 34 datasets, we developed three Add-ons (eGFR only, eGFR + urinary albumin-to-creatinine ratio [ACR] [the primary Add-on], and eGFR + dipstick proteinuria) for SCORE2 and SCORE2-OP. We validated c-statistics and net reclassification improvement (NRI), accounting for competing risk of non-CVD death, in 5,997,719 participants from 34 different datasets.In the target population of SCORE2 and SCORE2-OP without diabetes, the CKD Add-on (eGFR only) and CKD Add-on (eGFR + ACR) improved c-statistic by 0.006 (95%CI 0.004-0.008) and 0.016 (0.010-0.023), respectively, for SCORE2 and 0.012 (0.009-0.015) and 0.024 (0.014-0.035), respectively, for SCORE2-OP. Similar results were seen when we included individuals with diabetes and tested the CKD Add-on (eGFR + dipstick). In 57,485 European participants with CKD, SCORE2 or SCORE2-OP with a CKD Add-on showed a significant NRI (e.g., 0.100 [0.062-0.138] for SCORE2) compared to the qualitative approach in the ESC guideline.Our Add-ons with CKD measures improved CVD risk prediction beyond SCORE2 and SCORE2-OP. This approach will help clinicians and patients with CKD refine risk prediction and further personalize preventive therapies for CVD. |
536 | _ | _ | |a 313 - Krebsrisikofaktoren und Prävention (POF4-313) |0 G:(DE-HGF)POF4-313 |c POF4-313 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de |
650 | _ | 7 | |a cardiovascular disease |2 Other |
650 | _ | 7 | |a chronic kidney disease |2 Other |
650 | _ | 7 | |a meta-analysis |2 Other |
650 | _ | 7 | |a risk prediction |2 Other |
700 | 1 | _ | |a Kaptoge, Stephen |0 0000-0002-1155-4872 |b 1 |
700 | 1 | _ | |a Hageman, Steven Hj |0 0000-0003-2299-6745 |b 2 |
700 | 1 | _ | |a Sang, Yingying |b 3 |
700 | 1 | _ | |a Ballew, Shoshana H |0 0000-0002-7547-3764 |b 4 |
700 | 1 | _ | |a Grams, Morgan E |0 0000-0002-4430-6023 |b 5 |
700 | 1 | _ | |a Surapaneni, Aditya |b 6 |
700 | 1 | _ | |a Sun, Luanluan |b 7 |
700 | 1 | _ | |a Arnlov, Johan |b 8 |
700 | 1 | _ | |a Bozic, Milica |b 9 |
700 | 1 | _ | |a Brenner, Hermann |0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2 |b 10 |u dkfz |
700 | 1 | _ | |a Brunskill, Nigel J |b 11 |
700 | 1 | _ | |a Chang, Alex R |b 12 |
700 | 1 | _ | |a Chinnadurai, Rajkumar |0 0000-0003-3973-6595 |b 13 |
700 | 1 | _ | |a Cirillo, Massimo |b 14 |
700 | 1 | _ | |a Correa, Adolfo |b 15 |
700 | 1 | _ | |a Ebert, Natalie |0 0000-0002-4463-3315 |b 16 |
700 | 1 | _ | |a Eckardt, Kai Uwe |0 0000-0003-3823-0920 |b 17 |
700 | 1 | _ | |a Gansevoort, Ron T |b 18 |
700 | 1 | _ | |a Gutierrez, Orlando |b 19 |
700 | 1 | _ | |a Hadaegh, Farzad |b 20 |
700 | 1 | _ | |a He, Jiang |0 0000-0002-8286-9652 |b 21 |
700 | 1 | _ | |a Hwang, Shih Jen |0 0000-0002-2129-5704 |b 22 |
700 | 1 | _ | |a Jafar, Tazeen H |b 23 |
700 | 1 | _ | |a Jassal, Simerjot K |b 24 |
700 | 1 | _ | |a Kayama, Takamasa |b 25 |
700 | 1 | _ | |a Kovesdy, Csaba P |b 26 |
700 | 1 | _ | |a Landman, Gijs W |b 27 |
700 | 1 | _ | |a Levey, Andrew S |b 28 |
700 | 1 | _ | |a Lloyd-Jones, Donald M |b 29 |
700 | 1 | _ | |a Major, Rupert W |b 30 |
700 | 1 | _ | |a Miura, Katsuyuki |0 0000-0002-2646-9582 |b 31 |
700 | 1 | _ | |a Muntner, Paul |b 32 |
700 | 1 | _ | |a Nadkarni, Girish N |b 33 |
700 | 1 | _ | |a Nowak, Christoph |0 0000-0001-8435-3978 |b 34 |
700 | 1 | _ | |a Ohkubo, Takayoshi |b 35 |
700 | 1 | _ | |a Pena, Michelle J |b 36 |
700 | 1 | _ | |a Polkinghorne, Kevan R |b 37 |
700 | 1 | _ | |a Sairenchi, Toshimi |b 38 |
700 | 1 | _ | |a Schaeffner, Elke |b 39 |
700 | 1 | _ | |a Schneider, Markus P |b 40 |
700 | 1 | _ | |a Shalev, Varda |b 41 |
700 | 1 | _ | |a Shlipak, Michael G |b 42 |
700 | 1 | _ | |a Solbu, Marit D |0 0000-0002-4331-7548 |b 43 |
700 | 1 | _ | |a Stempniewicz, Nikita |b 44 |
700 | 1 | _ | |a Tollitt, James |0 0000-0002-9825-701X |b 45 |
700 | 1 | _ | |a Valdivielso, José M |b 46 |
700 | 1 | _ | |a van der Leeuw, Joep |b 47 |
700 | 1 | _ | |a Wang, Angela Yee Moon |b 48 |
700 | 1 | _ | |a Wen, Chi Pang |b 49 |
700 | 1 | _ | |a Woodward, Mark |b 50 |
700 | 1 | _ | |a Yamagishi, Kazumasa |b 51 |
700 | 1 | _ | |a Yatsuya, Hiroshi |b 52 |
700 | 1 | _ | |a Zhang, Luxia |b 53 |
700 | 1 | _ | |a Dorresteijn, Jannick An |0 0000-0002-0190-8526 |b 54 |
700 | 1 | _ | |a Di Angelantonio, Emanuele |0 0000-0001-8776-6719 |b 55 |
700 | 1 | _ | |a Visseren, Frank Lj |b 56 |
700 | 1 | _ | |a Pennells, Lisa |0 0000-0002-8594-3061 |b 57 |
700 | 1 | _ | |a Coresh, Josef |b 58 |
700 | 1 | _ | |a Consortium, Chronic Kidney Disease Prognosis |b 59 |e Collaboration Author |
773 | _ | _ | |a 10.1093/eurjpc/zwac176 |g p. zwac176 |0 PERI:(DE-600)2646239-4 |n 1 |p 8-16 |t European journal of preventive cardiology |v 30 |y 2023 |x 2047-4873 |
909 | C | O | |p VDB |o oai:inrepo02.dkfz.de:181232 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 10 |6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-313 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Krebsrisikofaktoren und Prävention |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-02-04 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-02-04 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2023-08-24 |w ger |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b EUR J PREV CARDIOL : 2022 |d 2023-08-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-08-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-08-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-08-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-08-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1110 |2 StatID |b Current Contents - Clinical Medicine |d 2023-08-24 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b EUR J PREV CARDIOL : 2022 |d 2023-08-24 |
920 | 1 | _ | |0 I:(DE-He78)C070-20160331 |k C070 |l C070 Klinische Epidemiologie und Alternf. |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)C070-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|